zgbmv function
void
zgbmv()
Implementation
void zgbmv(
final String TRANS,
final int M,
final int N,
final int KL,
final int KU,
final Complex ALPHA,
final Matrix<Complex> A_,
final int LDA,
final Array<Complex> X_,
final int INCX,
final Complex BETA,
final Array<Complex> Y_,
final int INCY,
) {
final A = A_.having(ld: LDA);
final X = X_.having();
final Y = Y_.having();
// Test the input parameters.
var INFO = 0;
if (!lsame(TRANS, 'N') && !lsame(TRANS, 'T') && !lsame(TRANS, 'C')) {
INFO = 1;
} else if (M < 0) {
INFO = 2;
} else if (N < 0) {
INFO = 3;
} else if (KL < 0) {
INFO = 4;
} else if (KU < 0) {
INFO = 5;
} else if (LDA < (KL + KU + 1)) {
INFO = 8;
} else if (INCX == 0) {
INFO = 10;
} else if (INCY == 0) {
INFO = 13;
}
if (INFO != 0) {
xerbla('ZGBMV', INFO);
return;
}
// Quick return if possible.
if ((M == 0) ||
(N == 0) ||
((ALPHA == Complex.zero) && (BETA == Complex.one))) return;
final NOCONJ = lsame(TRANS, 'T');
// Set LENX and LENY, the lengths of the vectors x and y, and set
// up the start points in X and Y.
final (LENX, LENY) = lsame(TRANS, 'N') ? (N, M) : (M, N);
var KX = INCX > 0 ? 1 : 1 - (LENX - 1) * INCX;
var KY = INCY > 0 ? 1 : 1 - (LENY - 1) * INCY;
// Start the operations. In this version the elements of A are
// accessed sequentially with one pass through the band part of A.
// First form y := beta*y.
if (BETA != Complex.one) {
if (INCY == 1) {
if (BETA == Complex.zero) {
for (var I = 1; I <= LENY; I++) {
Y[I] = Complex.zero;
}
} else {
for (var I = 1; I <= LENY; I++) {
Y[I] *= BETA;
}
}
} else {
var IY = KY;
if (BETA == Complex.zero) {
for (var I = 1; I <= LENY; I++) {
Y[IY] = Complex.zero;
IY += INCY;
}
} else {
for (var I = 1; I <= LENY; I++) {
Y[IY] *= BETA;
IY += INCY;
}
}
}
}
if (ALPHA == Complex.zero) return;
final KUP1 = KU + 1;
if (lsame(TRANS, 'N')) {
// Form y := alpha*A*x + y.
var JX = KX;
if (INCY == 1) {
for (var J = 1; J <= N; J++) {
final TEMP = ALPHA * X[JX];
final K = KUP1 - J;
for (var I = max(1, J - KU); I <= min(M, J + KL); I++) {
Y[I] += TEMP * A[K + I][J];
}
JX += INCX;
}
} else {
for (var J = 1; J <= N; J++) {
final TEMP = ALPHA * X[JX];
var IY = KY;
final K = KUP1 - J;
for (var I = max(1, J - KU); I <= min(M, J + KL); I++) {
Y[IY] += TEMP * A[K + I][J];
IY += INCY;
}
JX += INCX;
if (J > KU) KY += INCY;
}
}
} else {
// Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
var JY = KY;
if (INCX == 1) {
for (var J = 1; J <= N; J++) {
var TEMP = Complex.zero;
final K = KUP1 - J;
if (NOCONJ) {
for (var I = max(1, J - KU); I <= min(M, J + KL); I++) {
TEMP += A[K + I][J] * X[I];
}
} else {
for (var I = max(1, J - KU); I <= min(M, J + KL); I++) {
TEMP += A[K + I][J].conjugate() * X[I];
}
}
Y[JY] += ALPHA * TEMP;
JY += INCY;
}
} else {
for (var J = 1; J <= N; J++) {
var TEMP = Complex.zero;
var IX = KX;
final K = KUP1 - J;
if (NOCONJ) {
for (var I = max(1, J - KU); I <= min(M, J + KL); I++) {
TEMP += A[K + I][J] * X[IX];
IX += INCX;
}
} else {
for (var I = max(1, J - KU); I <= min(M, J + KL); I++) {
TEMP += A[K + I][J].conjugate() * X[IX];
IX += INCX;
}
}
Y[JY] += ALPHA * TEMP;
JY += INCY;
if (J > KU) KX += INCX;
}
}
}
}