zhpmv function
void
zhpmv()
Implementation
void zhpmv(
final String UPLO,
final int N,
final Complex ALPHA,
final Array<Complex> AP_,
final Array<Complex> X_,
final int INCX,
final Complex BETA,
final Array<Complex> Y_,
final int INCY,
) {
final AP = AP_.having();
final X = X_.having();
final Y = Y_.having();
Complex TEMP1, TEMP2;
int I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY;
// Test the input parameters.
INFO = 0;
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO = 1;
} else if (N < 0) {
INFO = 2;
} else if (INCX == 0) {
INFO = 6;
} else if (INCY == 0) {
INFO = 9;
}
if (INFO != 0) {
xerbla('ZHPMV', INFO);
return;
}
// Quick return if possible.
if ((N == 0) || ((ALPHA == Complex.zero) && (BETA == Complex.one))) return;
// Set up the start points in X and Y.
if (INCX > 0) {
KX = 1;
} else {
KX = 1 - (N - 1) * INCX;
}
if (INCY > 0) {
KY = 1;
} else {
KY = 1 - (N - 1) * INCY;
}
// Start the operations. In this version the elements of the array AP
// are accessed sequentially with one pass through AP.
// First form y := beta*y.
if (BETA != Complex.one) {
if (INCY == 1) {
if (BETA == Complex.zero) {
for (I = 1; I <= N; I++) {
Y[I] = Complex.zero;
}
} else {
for (I = 1; I <= N; I++) {
Y[I] = BETA * Y[I];
}
}
} else {
IY = KY;
if (BETA == Complex.zero) {
for (I = 1; I <= N; I++) {
Y[IY] = Complex.zero;
IY += INCY;
}
} else {
for (I = 1; I <= N; I++) {
Y[IY] = BETA * Y[IY];
IY += INCY;
}
}
}
}
if (ALPHA == Complex.zero) return;
KK = 1;
if (lsame(UPLO, 'U')) {
// Form y when AP contains the upper triangle.
if ((INCX == 1) && (INCY == 1)) {
for (J = 1; J <= N; J++) {
TEMP1 = ALPHA * X[J];
TEMP2 = Complex.zero;
K = KK;
for (I = 1; I <= J - 1; I++) {
Y[I] += TEMP1 * AP[K];
TEMP2 += AP[K].conjugate() * X[I];
K++;
}
Y[J] += TEMP1 * AP[KK + J - 1].real.toComplex() + ALPHA * TEMP2;
KK += J;
}
} else {
JX = KX;
JY = KY;
for (J = 1; J <= N; J++) {
TEMP1 = ALPHA * X[JX];
TEMP2 = Complex.zero;
IX = KX;
IY = KY;
for (K = KK; K <= KK + J - 2; K++) {
Y[IY] += TEMP1 * AP[K];
TEMP2 += AP[K].conjugate() * X[IX];
IX += INCX;
IY += INCY;
}
Y[JY] += TEMP1 * AP[KK + J - 1].real.toComplex() + ALPHA * TEMP2;
JX += INCX;
JY += INCY;
KK += J;
}
}
} else {
// Form y when AP contains the lower triangle.
if ((INCX == 1) && (INCY == 1)) {
for (J = 1; J <= N; J++) {
TEMP1 = ALPHA * X[J];
TEMP2 = Complex.zero;
Y[J] += TEMP1 * AP[KK].real.toComplex();
K = KK + 1;
for (I = J + 1; I <= N; I++) {
Y[I] += TEMP1 * AP[K];
TEMP2 += AP[K].conjugate() * X[I];
K++;
}
Y[J] += ALPHA * TEMP2;
KK += (N - J + 1);
}
} else {
JX = KX;
JY = KY;
for (J = 1; J <= N; J++) {
TEMP1 = ALPHA * X[JX];
TEMP2 = Complex.zero;
Y[JY] += TEMP1 * AP[KK].real.toComplex();
IX = JX;
IY = JY;
for (K = KK + 1; K <= KK + N - J; K++) {
IX += INCX;
IY += INCY;
Y[IY] += TEMP1 * AP[K];
TEMP2 += AP[K].conjugate() * X[IX];
}
Y[JY] += ALPHA * TEMP2;
JX += INCX;
JY += INCY;
KK += (N - J + 1);
}
}
}
}