dgbrfs function
void
dgbrfs()
Implementation
void dgbrfs(
final String TRANS,
final int N,
final int KL,
final int KU,
final int NRHS,
final Matrix<double> AB_,
final int LDAB,
final Matrix<double> AFB_,
final int LDAFB,
final Array<int> IPIV_,
final Matrix<double> B_,
final int LDB,
final Matrix<double> X_,
final int LDX,
final Array<double> FERR_,
final Array<double> BERR_,
final Array<double> WORK_,
final Array<int> IWORK_,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
final AFB = AFB_.having(ld: LDAFB);
final IPIV = IPIV_.having();
final B = B_.having(ld: LDB);
final X = X_.having(ld: LDX);
final FERR = FERR_.having();
final BERR = BERR_.having();
final WORK = WORK_.having();
final IWORK = IWORK_.having();
const ITMAX = 5;
const ZERO = 0.0;
const ONE = 1.0;
const TWO = 2.0;
const THREE = 3.0;
bool NOTRAN;
String TRANST;
int COUNT, I, J, K, KK, NZ;
double EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK;
final ISAVE = Array<int>(3);
final KASE = Box(0);
// Test the input parameters.
INFO.value = 0;
NOTRAN = lsame(TRANS, 'N');
if (!NOTRAN && !lsame(TRANS, 'T') && !lsame(TRANS, 'C')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (KL < 0) {
INFO.value = -3;
} else if (KU < 0) {
INFO.value = -4;
} else if (NRHS < 0) {
INFO.value = -5;
} else if (LDAB < KL + KU + 1) {
INFO.value = -7;
} else if (LDAFB < 2 * KL + KU + 1) {
INFO.value = -9;
} else if (LDB < max(1, N)) {
INFO.value = -12;
} else if (LDX < max(1, N)) {
INFO.value = -14;
}
if (INFO.value != 0) {
xerbla('DGBRFS', -INFO.value);
return;
}
// Quick return if possible
if (N == 0 || NRHS == 0) {
for (J = 1; J <= NRHS; J++) {
FERR[J] = ZERO;
BERR[J] = ZERO;
}
return;
}
if (NOTRAN) {
TRANST = 'T';
} else {
TRANST = 'N';
}
// NZ = maximum number of nonzero elements in each row of A, plus 1
NZ = min(KL + KU + 2, N + 1);
EPS = dlamch('Epsilon');
SAFMIN = dlamch('Safe minimum');
SAFE1 = NZ * SAFMIN;
SAFE2 = SAFE1 / EPS;
// Do for each right hand side
for (J = 1; J <= NRHS; J++) {
COUNT = 1;
LSTRES = THREE;
while (true) {
// Loop until stopping criterion is satisfied.
//
// Compute residual R = B - op(A) * X,
// where op(A) = A, A**T, or A**H, depending on TRANS.
dcopy(N, B(1, J).asArray(), 1, WORK(N + 1), 1);
dgbmv(TRANS, N, N, KL, KU, -ONE, AB, LDAB, X(1, J).asArray(), 1, ONE,
WORK(N + 1), 1);
// Compute componentwise relative backward error from formula
//
// max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
//
// where abs(Z) is the componentwise absolute value of the matrix
// or vector Z. If the i-th component of the denominator is less
// than SAFE2, then SAFE1 is added to the i-th components of the
// numerator and denominator before dividing.
for (I = 1; I <= N; I++) {
WORK[I] = B[I][J].abs();
}
// Compute abs(op(A))*abs(X) + abs(B).
if (NOTRAN) {
for (K = 1; K <= N; K++) {
KK = KU + 1 - K;
XK = X[K][J].abs();
for (I = max(1, K - KU); I <= min(N, K + KL); I++) {
WORK[I] += AB[KK + I][K].abs() * XK;
}
}
} else {
for (K = 1; K <= N; K++) {
S = ZERO;
KK = KU + 1 - K;
for (I = max(1, K - KU); I <= min(N, K + KL); I++) {
S += AB[KK + I][K].abs() * X[I][J].abs();
}
WORK[K] += S;
}
}
S = ZERO;
for (I = 1; I <= N; I++) {
if (WORK[I] > SAFE2) {
S = max(S, WORK[N + I].abs() / WORK[I]);
} else {
S = max(S, (WORK[N + I].abs() + SAFE1) / (WORK[I] + SAFE1));
}
}
BERR[J] = S;
// Test stopping criterion. Continue iterating if
// 1) The residual BERR(J) is larger than machine epsilon, and
// 2) BERR(J) decreased by at least a factor of 2 during the
// last iteration, and
// 3) At most ITMAX iterations tried.
if (BERR[J] > EPS && TWO * BERR[J] <= LSTRES && COUNT <= ITMAX) {
// Update solution and try again.
dgbtrs(TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, WORK(N + 1).asMatrix(N),
N, INFO);
daxpy(N, ONE, WORK(N + 1), 1, X(1, J).asArray(), 1);
LSTRES = BERR[J];
COUNT++;
continue;
}
break;
}
// Bound error from formula
//
// norm(X - XTRUE) / norm(X) <= FERR =
// norm( abs(inv(op(A)))*
// ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
//
// where
// norm(Z) is the magnitude of the largest component of Z
// inv(op(A)) is the inverse of op(A)
// abs(Z) is the componentwise absolute value of the matrix or
// vector Z
// NZ is the maximum number of nonzeros in any row of A, plus 1
// EPS is machine epsilon
//
// The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
// is incremented by SAFE1 if the i-th component of
// abs(op(A))*abs(X) + abs(B) is less than SAFE2.
//
// Use DLACN2 to estimate the infinity-norm of the matrix
// inv(op(A)) * diag(W),
// where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
for (I = 1; I <= N; I++) {
if (WORK[I] > SAFE2) {
WORK[I] = WORK[N + I].abs() + NZ * EPS * WORK[I];
} else {
WORK[I] = WORK[N + I].abs() + NZ * EPS * WORK[I] + SAFE1;
}
}
KASE.value = 0;
while (true) {
dlacn2(N, WORK(2 * N + 1), WORK(N + 1), IWORK, FERR.box(J), KASE, ISAVE);
if (KASE.value == 0) break;
if (KASE.value == 1) {
// Multiply by diag(W)*inv(op(A)**T).
dgbtrs(TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV, WORK(N + 1).asMatrix(N),
N, INFO);
for (I = 1; I <= N; I++) {
WORK[N + I] *= WORK[I];
}
} else {
// Multiply by inv(op(A))*diag(W).
for (I = 1; I <= N; I++) {
WORK[N + I] *= WORK[I];
}
dgbtrs(TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, WORK(N + 1).asMatrix(N),
N, INFO);
}
}
// Normalize error.
LSTRES = ZERO;
for (I = 1; I <= N; I++) {
LSTRES = max(LSTRES, X[I][J].abs());
}
if (LSTRES != ZERO) FERR[J] /= LSTRES;
}
}