dgbsvx function
void
dgbsvx(
- String FACT,
- String TRANS,
- int N,
- int KL,
- int KU,
- int NRHS,
- Matrix<
double> AB_, - int LDAB,
- Matrix<
double> AFB_, - int LDAFB,
- Array<
int> IPIV_, - Box<
String> EQUED, - Array<
double> R_, - Array<
double> C_, - Matrix<
double> B_, - int LDB,
- Matrix<
double> X_, - int LDX,
- Box<
double> RCOND, - Array<
double> FERR_, - Array<
double> BERR_, - Array<
double> WORK_, - Array<
int> IWORK_, - Box<
int> INFO,
Implementation
void dgbsvx(
final String FACT,
final String TRANS,
final int N,
final int KL,
final int KU,
final int NRHS,
final Matrix<double> AB_,
final int LDAB,
final Matrix<double> AFB_,
final int LDAFB,
final Array<int> IPIV_,
final Box<String> EQUED,
final Array<double> R_,
final Array<double> C_,
final Matrix<double> B_,
final int LDB,
final Matrix<double> X_,
final int LDX,
final Box<double> RCOND,
final Array<double> FERR_,
final Array<double> BERR_,
final Array<double> WORK_,
final Array<int> IWORK_,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
final AFB = AFB_.having(ld: LDAFB);
final IPIV = IPIV_.having();
final B = B_.having(ld: LDB);
final X = X_.having(ld: LDX);
final R = R_.having();
final C = C_.having();
final FERR = FERR_.having();
final BERR = BERR_.having();
final WORK = WORK_.having();
final IWORK = IWORK_.having();
const ZERO = 0.0, ONE = 1.0;
bool COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU;
String NORM;
int I, J, J1, J2;
double ANORM, BIGNUM = 0, RCMAX, RCMIN, RPVGRW, SMLNUM = 0;
final INFEQU = Box(0);
final AMAX = Box(0.0), COLCND = Box(0.0), ROWCND = Box(0.0);
INFO.value = 0;
NOFACT = lsame(FACT, 'N');
EQUIL = lsame(FACT, 'E');
NOTRAN = lsame(TRANS, 'N');
if (NOFACT || EQUIL) {
EQUED.value = 'N';
ROWEQU = false;
COLEQU = false;
} else {
ROWEQU = lsame(EQUED.value, 'R') || lsame(EQUED.value, 'B');
COLEQU = lsame(EQUED.value, 'C') || lsame(EQUED.value, 'B');
SMLNUM = dlamch('Safe minimum');
BIGNUM = ONE / SMLNUM;
}
// Test the input parameters.
if (!NOFACT && !EQUIL && !lsame(FACT, 'F')) {
INFO.value = -1;
} else if (!NOTRAN && !lsame(TRANS, 'T') && !lsame(TRANS, 'C')) {
INFO.value = -2;
} else if (N < 0) {
INFO.value = -3;
} else if (KL < 0) {
INFO.value = -4;
} else if (KU < 0) {
INFO.value = -5;
} else if (NRHS < 0) {
INFO.value = -6;
} else if (LDAB < KL + KU + 1) {
INFO.value = -8;
} else if (LDAFB < 2 * KL + KU + 1) {
INFO.value = -10;
} else if (lsame(FACT, 'F') &&
!(ROWEQU || COLEQU || lsame(EQUED.value, 'N'))) {
INFO.value = -12;
} else {
if (ROWEQU) {
RCMIN = BIGNUM;
RCMAX = ZERO;
for (J = 1; J <= N; J++) {
RCMIN = min(RCMIN, R[J]);
RCMAX = max(RCMAX, R[J]);
}
if (RCMIN <= ZERO) {
INFO.value = -13;
} else if (N > 0) {
ROWCND.value = max(RCMIN, SMLNUM) / min(RCMAX, BIGNUM);
} else {
ROWCND.value = ONE;
}
}
if (COLEQU && INFO.value == 0) {
RCMIN = BIGNUM;
RCMAX = ZERO;
for (J = 1; J <= N; J++) {
RCMIN = min(RCMIN, C[J]);
RCMAX = max(RCMAX, C[J]);
}
if (RCMIN <= ZERO) {
INFO.value = -14;
} else if (N > 0) {
COLCND.value = max(RCMIN, SMLNUM) / min(RCMAX, BIGNUM);
} else {
COLCND.value = ONE;
}
}
if (INFO.value == 0) {
if (LDB < max(1, N)) {
INFO.value = -16;
} else if (LDX < max(1, N)) {
INFO.value = -18;
}
}
}
if (INFO.value != 0) {
xerbla('DGBSVX', -INFO.value);
return;
}
if (EQUIL) {
// Compute row and column scalings to equilibrate the matrix A.
dgbequ(N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, INFEQU);
if (INFEQU.value == 0) {
// Equilibrate the matrix.
dlaqgb(N, N, KL, KU, AB, LDAB, R, C, ROWCND.value, COLCND.value,
AMAX.value, EQUED);
ROWEQU = lsame(EQUED.value, 'R') || lsame(EQUED.value, 'B');
COLEQU = lsame(EQUED.value, 'C') || lsame(EQUED.value, 'B');
}
}
// Scale the right hand side.
if (NOTRAN) {
if (ROWEQU) {
for (J = 1; J <= NRHS; J++) {
for (I = 1; I <= N; I++) {
B[I][J] = R[I] * B[I][J];
}
}
}
} else if (COLEQU) {
for (J = 1; J <= NRHS; J++) {
for (I = 1; I <= N; I++) {
B[I][J] = C[I] * B[I][J];
}
}
}
if (NOFACT || EQUIL) {
// Compute the LU factorization of the band matrix A.
for (J = 1; J <= N; J++) {
J1 = max(J - KU, 1);
J2 = min(J + KL, N);
dcopy(J2 - J1 + 1, AB(KU + 1 - J + J1, J).asArray(), 1,
AFB(KL + KU + 1 - J + J1, J).asArray(), 1);
}
dgbtrf(N, N, KL, KU, AFB, LDAFB, IPIV, INFO);
// Return if INFO is non-zero.
if (INFO.value > 0) {
// Compute the reciprocal pivot growth factor of the
// leading rank-deficient INFO columns of A.
ANORM = ZERO;
for (J = 1; J <= INFO.value; J++) {
for (I = max(KU + 2 - J, 1);
I <= min(N + KU + 1 - J, KL + KU + 1);
I++) {
ANORM = max(ANORM, AB[I][J].abs());
}
}
RPVGRW = dlantb('M', 'U', 'N', INFO.value, min(INFO.value - 1, KL + KU),
AFB(max(1, KL + KU + 2 - INFO.value), 1), LDAFB, WORK);
if (RPVGRW == ZERO) {
RPVGRW = ONE;
} else {
RPVGRW = ANORM / RPVGRW;
}
WORK[1] = RPVGRW;
RCOND.value = ZERO;
return;
}
}
// Compute the norm of the matrix A and the
// reciprocal pivot growth factor RPVGRW.
if (NOTRAN) {
NORM = '1';
} else {
NORM = 'I';
}
ANORM = dlangb(NORM, N, KL, KU, AB, LDAB, WORK);
RPVGRW = dlantb('M', 'U', 'N', N, KL + KU, AFB, LDAFB, WORK);
if (RPVGRW == ZERO) {
RPVGRW = ONE;
} else {
RPVGRW = dlangb('M', N, KL, KU, AB, LDAB, WORK) / RPVGRW;
}
// Compute the reciprocal of the condition number of A.
dgbcon(NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND, WORK, IWORK, INFO);
// Compute the solution matrix X.
dlacpy('Full', N, NRHS, B, LDB, X, LDX);
dgbtrs(TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX, INFO);
// Use iterative refinement to improve the computed solution and
// compute error bounds and backward error estimates for it.
dgbrfs(TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, B, LDB, X, LDX,
FERR, BERR, WORK, IWORK, INFO);
// Transform the solution matrix X to a solution of the original
// system.
if (NOTRAN) {
if (COLEQU) {
for (J = 1; J <= NRHS; J++) {
for (I = 1; I <= N; I++) {
X[I][J] = C[I] * X[I][J];
}
}
for (J = 1; J <= NRHS; J++) {
FERR[J] /= COLCND.value;
}
}
} else if (ROWEQU) {
for (J = 1; J <= NRHS; J++) {
for (I = 1; I <= N; I++) {
X[I][J] = R[I] * X[I][J];
}
}
for (J = 1; J <= NRHS; J++) {
FERR[J] /= ROWCND.value;
}
}
// Set INFO = N+1 if the matrix is singular to working precision.
if (RCOND.value < dlamch('Epsilon')) INFO.value = N + 1;
WORK[1] = RPVGRW;
}