dgelsd function
void
dgelsd()
Implementation
void dgelsd(
final int M,
final int N,
final int NRHS,
final Matrix<double> A_,
final int LDA,
final Matrix<double> B_,
final int LDB,
final Array<double> S_,
final double RCOND,
final Box<int> RANK,
final Array<double> WORK_,
final int LWORK,
final Array<int> IWORK_,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final B = B_.having(ld: LDB);
final S = S_.having();
final WORK = WORK_.having();
final IWORK = IWORK_.having();
const ZERO = 0.0, ONE = 1.0, TWO = 2.0;
// Test the input arguments.
INFO.value = 0;
final MINMN = max(1, min(M, N));
final MAXMN = max(M, N);
final MNTHR = ilaenv(6, 'DGELSD', ' ', M, N, NRHS, -1);
final LQUERY = LWORK == -1;
if (M < 0) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (NRHS < 0) {
INFO.value = -3;
} else if (LDA < max(1, M)) {
INFO.value = -5;
} else if (LDB < max(1, MAXMN)) {
INFO.value = -7;
}
if (INFO.value != 0) {
xerbla('DGELSD', -INFO.value);
return;
}
final SMLSIZ = ilaenv(9, 'DGELSD', ' ', 0, 0, 0, 0);
// Compute workspace.
// (Note: Comments in the code beginning "Workspace:" describe the
// minimal amount of workspace needed at that point in the code,
// as well as the preferred amount for good performance.
// NB refers to the optimal block size for the immediately
// following subroutine, as returned by ILAENV.)
final NLVL = max(log(MINMN / (SMLSIZ + 1)) ~/ log(TWO) + 1, 0);
final LIWORK = 3 * MINMN * NLVL + 11 * MINMN;
int MAXWRK = 1;
final int MM;
if (M >= N && M >= MNTHR) {
// Path 1a - overdetermined, with many more rows than columns.
MM = N;
MAXWRK = max(MAXWRK, N + N * ilaenv(1, 'DGEQRF', ' ', M, N, -1, -1));
MAXWRK = max(MAXWRK, N + NRHS * ilaenv(1, 'DORMQR', 'LT', M, NRHS, N, -1));
} else {
MM = M;
}
int MINWRK = 1;
final int WLALSD;
if (M >= N) {
// Path 1 - overdetermined or exactly determined.
MAXWRK =
max(MAXWRK, 3 * N + (MM + N) * ilaenv(1, 'DGEBRD', ' ', MM, N, -1, -1));
MAXWRK =
max(MAXWRK, 3 * N + NRHS * ilaenv(1, 'DORMBR', 'QLT', MM, NRHS, N, -1));
MAXWRK = max(
MAXWRK, 3 * N + (N - 1) * ilaenv(1, 'DORMBR', 'PLN', N, NRHS, N, -1));
WLALSD = 9 * N +
2 * N * SMLSIZ +
8 * N * NLVL +
N * NRHS +
pow((SMLSIZ + 1), 2).toInt();
MAXWRK = max(MAXWRK, 3 * N + WLALSD);
MINWRK = max(3 * N + MM, max(3 * N + NRHS, 3 * N + WLALSD));
} else {
WLALSD = 9 * M +
2 * M * SMLSIZ +
8 * M * NLVL +
M * NRHS +
pow((SMLSIZ + 1), 2).toInt();
if (N >= MNTHR) {
// Path 2a - underdetermined, with many more columns than rows.
MAXWRK = M + M * ilaenv(1, 'DGELQF', ' ', M, N, -1, -1);
MAXWRK = max(MAXWRK,
M * M + 4 * M + 2 * M * ilaenv(1, 'DGEBRD', ' ', M, M, -1, -1));
MAXWRK = max(MAXWRK,
M * M + 4 * M + NRHS * ilaenv(1, 'DORMBR', 'QLT', M, NRHS, M, -1));
MAXWRK = max(MAXWRK,
M * M + 4 * M + (M - 1) * ilaenv(1, 'DORMBR', 'PLN', M, NRHS, M, -1));
if (NRHS > 1) {
MAXWRK = max(MAXWRK, M * M + M + M * NRHS);
} else {
MAXWRK = max(MAXWRK, M * M + 2 * M);
}
MAXWRK =
max(MAXWRK, M + NRHS * ilaenv(1, 'DORMLQ', 'LT', N, NRHS, M, -1));
MAXWRK = max(MAXWRK, M * M + 4 * M + WLALSD);
// XXX: Ensure the Path 2a case below is triggered. The workspace
// calculation should use queries for all routines eventually.
MAXWRK = max(
MAXWRK, 4 * M + M * M + max(max(M, 2 * M - 4), max(NRHS, N - 3 * M)));
} else {
// Path 2 - remaining underdetermined cases.
MAXWRK = 3 * M + (N + M) * ilaenv(1, 'DGEBRD', ' ', M, N, -1, -1);
MAXWRK = max(
MAXWRK, 3 * M + NRHS * ilaenv(1, 'DORMBR', 'QLT', M, NRHS, N, -1));
MAXWRK =
max(MAXWRK, 3 * M + M * ilaenv(1, 'DORMBR', 'PLN', N, NRHS, M, -1));
MAXWRK = max(MAXWRK, 3 * M + WLALSD);
}
MINWRK = max(3 * M + NRHS, max(3 * M + M, 3 * M + WLALSD));
}
MINWRK = min(MINWRK, MAXWRK);
WORK[1] = MAXWRK.toDouble();
IWORK[1] = LIWORK;
if (LWORK < MINWRK && !LQUERY) {
INFO.value = -12;
xerbla('DGELSD', -INFO.value);
return;
} else if (LQUERY) {
WORK[1] = MAXWRK.toDouble();
IWORK[1] = LIWORK;
return;
}
// Quick return if possible.
if (M == 0 || N == 0) {
RANK.value = 0;
return;
}
// Get machine parameters.
final EPS = dlamch('P');
final SFMIN = dlamch('S');
final SMLNUM = SFMIN / EPS;
final BIGNUM = ONE / SMLNUM;
// Scale A if max entry outside range [SMLNUM,BIGNUM].
final ANRM = dlange('M', M, N, A, LDA, WORK);
final int IASCL;
if (ANRM > ZERO && ANRM < SMLNUM) {
// Scale matrix norm up to SMLNUM.
dlascl('G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO);
IASCL = 1;
} else if (ANRM > BIGNUM) {
// Scale matrix norm down to BIGNUM.
dlascl('G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO);
IASCL = 2;
} else if (ANRM == ZERO) {
// Matrix all zero. Return zero solution.
dlaset('F', max(M, N), NRHS, ZERO, ZERO, B, LDB);
dlaset('F', MINMN, 1, ZERO, ZERO, S.asMatrix(1), 1);
RANK.value = 0;
WORK[1] = MAXWRK.toDouble();
IWORK[1] = LIWORK;
return;
} else {
IASCL = 0;
}
// Scale B if max entry outside range [SMLNUM,BIGNUM].
final BNRM = dlange('M', M, NRHS, B, LDB, WORK);
final int IBSCL;
if (BNRM > ZERO && BNRM < SMLNUM) {
// Scale matrix norm up to SMLNUM.
dlascl('G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO);
IBSCL = 1;
} else if (BNRM > BIGNUM) {
// Scale matrix norm down to BIGNUM.
dlascl('G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO);
IBSCL = 2;
} else {
IBSCL = 0;
}
// If M < N make sure certain entries of B are zero.
if (M < N) dlaset('F', N - M, NRHS, ZERO, ZERO, B(M + 1, 1), LDB);
// Overdetermined case.
if (M >= N) {
// Path 1 - overdetermined or exactly determined.
final int MM;
if (M >= MNTHR) {
// Path 1a - overdetermined, with many more rows than columns.
MM = N;
final ITAU = 1;
final NWORK = ITAU + N;
// Compute A=Q*R.
// (Workspace: need 2*N, prefer N+N*NB)
dgeqrf(M, N, A, LDA, WORK(ITAU), WORK(NWORK), LWORK - NWORK + 1, INFO);
// Multiply B by transpose(Q).
// (Workspace: need N+NRHS, prefer N+NRHS*NB)
dormqr('L', 'T', M, NRHS, N, A, LDA, WORK(ITAU), B, LDB, WORK(NWORK),
LWORK - NWORK + 1, INFO);
// Zero out below R.
if (N > 1) {
dlaset('L', N - 1, N - 1, ZERO, ZERO, A(2, 1), LDA);
}
} else {
MM = M;
}
final IE = 1;
final ITAUQ = IE + N;
final ITAUP = ITAUQ + N;
final NWORK = ITAUP + N;
// Bidiagonalize R in A.
// (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
dgebrd(MM, N, A, LDA, S, WORK(IE), WORK(ITAUQ), WORK(ITAUP), WORK(NWORK),
LWORK - NWORK + 1, INFO);
// Multiply B by transpose of left bidiagonalizing vectors of R.
// (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
dormbr('Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK(ITAUQ), B, LDB, WORK(NWORK),
LWORK - NWORK + 1, INFO);
// Solve the bidiagonal least squares problem.
dlalsd('U', SMLSIZ, N, NRHS, S, WORK(IE), B, LDB, RCOND, RANK, WORK(NWORK),
IWORK, INFO);
if (INFO.value != 0) {
WORK[1] = MAXWRK.toDouble();
IWORK[1] = LIWORK;
return;
}
// Multiply B by right bidiagonalizing vectors of R.
dormbr('P', 'L', 'N', N, NRHS, N, A, LDA, WORK(ITAUP), B, LDB, WORK(NWORK),
LWORK - NWORK + 1, INFO);
} else if (N >= MNTHR &&
LWORK >=
4 * M +
M * M +
max(max(M, 2 * M - 4), max(max(NRHS, N - 3 * M), WLALSD))) {
// Path 2a - underdetermined, with many more columns than rows
// and sufficient workspace for an efficient algorithm.
final LDWORK = (LWORK >=
max(4 * M + M * LDA + max(max(M, 2 * M - 4), max(NRHS, N - 3 * M)),
max(M * LDA + M + M * NRHS, 4 * M + M * LDA + WLALSD)))
? LDA
: M;
final ITAU = 1;
var NWORK = M + 1;
// Compute A=L*Q.
// (Workspace: need 2*M, prefer M+M*NB)
dgelqf(M, N, A, LDA, WORK(ITAU), WORK(NWORK), LWORK - NWORK + 1, INFO);
final IL = NWORK;
// Copy L to WORK(IL), zeroing out above its diagonal.
dlacpy('L', M, M, A, LDA, WORK(IL).asMatrix(LDWORK), LDWORK);
dlaset('U', M - 1, M - 1, ZERO, ZERO, WORK(IL + LDWORK).asMatrix(LDWORK),
LDWORK);
final IE = IL + LDWORK * M;
final ITAUQ = IE + M;
final ITAUP = ITAUQ + M;
NWORK = ITAUP + M;
// Bidiagonalize L in WORK(IL).
// (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
dgebrd(M, M, WORK(IL).asMatrix(LDWORK), LDWORK, S, WORK(IE), WORK(ITAUQ),
WORK(ITAUP), WORK(NWORK), LWORK - NWORK + 1, INFO);
// Multiply B by transpose of left bidiagonalizing vectors of L.
// (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
dormbr('Q', 'L', 'T', M, NRHS, M, WORK(IL).asMatrix(LDWORK), LDWORK,
WORK(ITAUQ), B, LDB, WORK(NWORK), LWORK - NWORK + 1, INFO);
// Solve the bidiagonal least squares problem.
dlalsd('U', SMLSIZ, M, NRHS, S, WORK(IE), B, LDB, RCOND, RANK, WORK(NWORK),
IWORK, INFO);
if (INFO.value != 0) {
WORK[1] = MAXWRK.toDouble();
IWORK[1] = LIWORK;
return;
}
// Multiply B by right bidiagonalizing vectors of L.
dormbr('P', 'L', 'N', M, NRHS, M, WORK(IL).asMatrix(LDWORK), LDWORK,
WORK(ITAUP), B, LDB, WORK(NWORK), LWORK - NWORK + 1, INFO);
// Zero out below first M rows of B.
dlaset('F', N - M, NRHS, ZERO, ZERO, B(M + 1, 1), LDB);
NWORK = ITAU + M;
// Multiply transpose(Q) by B.
// (Workspace: need M+NRHS, prefer M+NRHS*NB)
dormlq('L', 'T', N, NRHS, M, A, LDA, WORK(ITAU), B, LDB, WORK(NWORK),
LWORK - NWORK + 1, INFO);
} else {
// Path 2 - remaining underdetermined cases.
final IE = 1;
final ITAUQ = IE + M;
final ITAUP = ITAUQ + M;
final NWORK = ITAUP + M;
// Bidiagonalize A.
// (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
dgebrd(M, N, A, LDA, S, WORK(IE), WORK(ITAUQ), WORK(ITAUP), WORK(NWORK),
LWORK - NWORK + 1, INFO);
// Multiply B by transpose of left bidiagonalizing vectors.
// (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
dormbr('Q', 'L', 'T', M, NRHS, N, A, LDA, WORK(ITAUQ), B, LDB, WORK(NWORK),
LWORK - NWORK + 1, INFO);
// Solve the bidiagonal least squares problem.
dlalsd('L', SMLSIZ, M, NRHS, S, WORK(IE), B, LDB, RCOND, RANK, WORK(NWORK),
IWORK, INFO);
if (INFO.value != 0) {
WORK[1] = MAXWRK.toDouble();
IWORK[1] = LIWORK;
return;
}
// Multiply B by right bidiagonalizing vectors of A.
dormbr('P', 'L', 'N', N, NRHS, M, A, LDA, WORK(ITAUP), B, LDB, WORK(NWORK),
LWORK - NWORK + 1, INFO);
}
// Undo scaling.
if (IASCL == 1) {
dlascl('G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO);
dlascl('G', 0, 0, SMLNUM, ANRM, MINMN, 1, S.asMatrix(MINMN), MINMN, INFO);
} else if (IASCL == 2) {
dlascl('G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO);
dlascl('G', 0, 0, BIGNUM, ANRM, MINMN, 1, S.asMatrix(MINMN), MINMN, INFO);
}
if (IBSCL == 1) {
dlascl('G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO);
} else if (IBSCL == 2) {
dlascl('G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO);
}
WORK[1] = MAXWRK.toDouble();
IWORK[1] = LIWORK;
}