dgelsy function

void dgelsy(
  1. int M,
  2. int N,
  3. int NRHS,
  4. Matrix<double> A_,
  5. int LDA,
  6. Matrix<double> B_,
  7. int LDB,
  8. Array<int> JPVT_,
  9. double RCOND,
  10. Box<int> RANK,
  11. Array<double> WORK_,
  12. int LWORK,
  13. Box<int> INFO,
)

Implementation

void dgelsy(
  final int M,
  final int N,
  final int NRHS,
  final Matrix<double> A_,
  final int LDA,
  final Matrix<double> B_,
  final int LDB,
  final Array<int> JPVT_,
  final double RCOND,
  final Box<int> RANK,
  final Array<double> WORK_,
  final int LWORK,
  final Box<int> INFO,
) {
  final A = A_.having(ld: LDA);
  final B = B_.having(ld: LDB);
  final JPVT = JPVT_.having();
  final WORK = WORK_.having();

  const IMAX = 1, IMIN = 2;
  const ZERO = 0.0, ONE = 1.0;
  bool LQUERY;
  int I,
      IASCL,
      IBSCL,
      ISMAX,
      ISMIN,
      J,
      LWKMIN,
      LWKOPT = 0,
      MN,
      NB,
      NB1,
      NB2,
      NB3,
      NB4;
  double ANRM, BIGNUM, BNRM, SMAX, SMIN, SMLNUM, WSIZE;
  final SMINPR = Box(0.0),
      SMAXPR = Box(0.0),
      C1 = Box(0.0),
      C2 = Box(0.0),
      S1 = Box(0.0),
      S2 = Box(0.0);

  MN = min(M, N);
  ISMIN = MN + 1;
  ISMAX = 2 * MN + 1;

  // Test the input arguments.

  INFO.value = 0;
  LQUERY = (LWORK == -1);
  if (M < 0) {
    INFO.value = -1;
  } else if (N < 0) {
    INFO.value = -2;
  } else if (NRHS < 0) {
    INFO.value = -3;
  } else if (LDA < max(1, M)) {
    INFO.value = -5;
  } else if (LDB < max(1, max(M, N))) {
    INFO.value = -7;
  }

  // Figure out optimal block size

  if (INFO.value == 0) {
    if (MN == 0 || NRHS == 0) {
      LWKMIN = 1;
      LWKOPT = 1;
    } else {
      NB1 = ilaenv(1, 'DGEQRF', ' ', M, N, -1, -1);
      NB2 = ilaenv(1, 'DGERQF', ' ', M, N, -1, -1);
      NB3 = ilaenv(1, 'DORMQR', ' ', M, N, NRHS, -1);
      NB4 = ilaenv(1, 'DORMRQ', ' ', M, N, NRHS, -1);
      NB = max(
          max(
            NB1,
            NB2,
          ),
          max(NB3, NB4));
      LWKMIN = MN + max(2 * MN, max(N + 1, MN + NRHS));
      LWKOPT = max(LWKMIN, max(MN + 2 * N + NB * (N + 1), 2 * MN + NB * NRHS));
    }
    WORK[1] = LWKOPT.toDouble();

    if (LWORK < LWKMIN && !LQUERY) {
      INFO.value = -12;
    }
  }

  if (INFO.value != 0) {
    xerbla('DGELSY', -INFO.value);
    return;
  } else if (LQUERY) {
    return;
  }

  // Quick return if possible

  if (MN == 0 || NRHS == 0) {
    RANK.value = 0;
    return;
  }

  // Get machine parameters

  SMLNUM = dlamch('S') / dlamch('P');
  BIGNUM = ONE / SMLNUM;

  // Scale A, B if max entries outside range [SMLNUM,BIGNUM]

  ANRM = dlange('M', M, N, A, LDA, WORK);
  IASCL = 0;
  if (ANRM > ZERO && ANRM < SMLNUM) {
    // Scale matrix norm up to SMLNUM

    dlascl('G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO);
    IASCL = 1;
  } else if (ANRM > BIGNUM) {
    // Scale matrix norm down to BIGNUM

    dlascl('G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO);
    IASCL = 2;
  } else if (ANRM == ZERO) {
    // Matrix all zero. Return zero solution.

    dlaset('F', max(M, N), NRHS, ZERO, ZERO, B, LDB);
    RANK.value = 0;
    WORK[1] = LWKOPT.toDouble();
    return;
  }

  BNRM = dlange('M', M, NRHS, B, LDB, WORK);
  IBSCL = 0;
  if (BNRM > ZERO && BNRM < SMLNUM) {
    // Scale matrix norm up to SMLNUM

    dlascl('G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO);
    IBSCL = 1;
  } else if (BNRM > BIGNUM) {
    // Scale matrix norm down to BIGNUM

    dlascl('G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO);
    IBSCL = 2;
  }

  // Compute QR factorization with column pivoting of A:
  //    A * P = Q * R

  dgeqp3(M, N, A, LDA, JPVT, WORK(1), WORK(MN + 1), LWORK - MN, INFO);
  WSIZE = MN + WORK[MN + 1];

  // workspace: MN+2*N+NB*(N+1).
  // Details of Householder rotations stored in WORK(1:MN).

  // Determine RANK using incremental condition estimation

  WORK[ISMIN] = ONE;
  WORK[ISMAX] = ONE;
  SMAX = A[1][1].abs();
  SMIN = SMAX;
  if (A[1][1].abs() == ZERO) {
    RANK.value = 0;
    dlaset('F', max(M, N), NRHS, ZERO, ZERO, B, LDB);
    WORK[1] = LWKOPT.toDouble();
    return;
  } else {
    RANK.value = 1;
  }

  while (RANK.value < MN) {
    I = RANK.value + 1;
    dlaic1(IMIN, RANK.value, WORK(ISMIN), SMIN, A(1, I).asArray(), A[I][I],
        SMINPR, S1, C1);
    dlaic1(IMAX, RANK.value, WORK(ISMAX), SMAX, A(1, I).asArray(), A[I][I],
        SMAXPR, S2, C2);

    if (SMAXPR.value * RCOND <= SMINPR.value) {
      for (I = 1; I <= RANK.value; I++) {
        WORK[ISMIN + I - 1] = S1.value * WORK[ISMIN + I - 1];
        WORK[ISMAX + I - 1] = S2.value * WORK[ISMAX + I - 1];
      }
      WORK[ISMIN + RANK.value] = C1.value;
      WORK[ISMAX + RANK.value] = C2.value;
      SMIN = SMINPR.value;
      SMAX = SMAXPR.value;
      RANK.value++;
      continue;
    }
    break;
  }

  // workspace: 3*MN.

  // Logically partition R = [ R11 R12 ]
  //                         [  0  R22 ]
  // where R11 = R(1:RANK,1:RANK)

  // [R11,R12] = [ T11, 0 ] * Y

  if (RANK.value < N) {
    dtzrzf(RANK.value, N, A, LDA, WORK(MN + 1), WORK(2 * MN + 1),
        LWORK - 2 * MN, INFO);
  }

  // workspace: 2*MN.
  // Details of Householder rotations stored in WORK(MN+1:2*MN)

  // B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)

  dormqr('Left', 'Transpose', M, NRHS, MN, A, LDA, WORK(1), B, LDB,
      WORK(2 * MN + 1), LWORK - 2 * MN, INFO);
  WSIZE = max(WSIZE, 2 * MN + WORK[2 * MN + 1]);

  // workspace: 2*MN+NB*NRHS.

  // B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)

  dtrsm('Left', 'Upper', 'No transpose', 'Non-unit', RANK.value, NRHS, ONE, A,
      LDA, B, LDB);

  for (J = 1; J <= NRHS; J++) {
    for (I = RANK.value + 1; I <= N; I++) {
      B[I][J] = ZERO;
    }
  }

  // B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)

  if (RANK.value < N) {
    dormrz('Left', 'Transpose', N, NRHS, RANK.value, N - RANK.value, A, LDA,
        WORK(MN + 1), B, LDB, WORK(2 * MN + 1), LWORK - 2 * MN, INFO);
  }

  // workspace: 2*MN+NRHS.

  // B(1:N,1:NRHS) := P * B(1:N,1:NRHS)

  for (J = 1; J <= NRHS; J++) {
    for (I = 1; I <= N; I++) {
      WORK[JPVT[I]] = B[I][J];
    }
    dcopy(N, WORK(1), 1, B(1, J).asArray(), 1);
  }

  // workspace: N.

  // Undo scaling

  if (IASCL == 1) {
    dlascl('G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO);
    dlascl('U', 0, 0, SMLNUM, ANRM, RANK.value, RANK.value, A, LDA, INFO);
  } else if (IASCL == 2) {
    dlascl('G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO);
    dlascl('U', 0, 0, BIGNUM, ANRM, RANK.value, RANK.value, A, LDA, INFO);
  }
  if (IBSCL == 1) {
    dlascl('G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO);
  } else if (IBSCL == 2) {
    dlascl('G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO);
  }

  WORK[1] = LWKOPT.toDouble();
}