dgttrs function
void
dgttrs()
Implementation
void dgttrs(
final String TRANS,
final int N,
final int NRHS,
final Array<double> DL_,
final Array<double> D_,
final Array<double> DU_,
final Array<double> DU2_,
final Array<int> IPIV_,
final Matrix<double> B_,
final int LDB,
final Box<int> INFO,
) {
final IPIV = IPIV_.having();
final DL = DL_.having();
final D = D_.having();
final DU = DU_.having();
final DU2 = DU2_.having();
final B = B_.having(ld: LDB);
INFO.value = 0;
final NOTRAN = lsame(TRANS, 'N');
if (!NOTRAN && !lsame(TRANS, 'T') && !lsame(TRANS, 'C')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (NRHS < 0) {
INFO.value = -3;
} else if (LDB < max(N, 1)) {
INFO.value = -10;
}
if (INFO.value != 0) {
xerbla('DGTTRS', -INFO.value);
return;
}
// Quick return if possible
if (N == 0 || NRHS == 0) return;
// Decode TRANS
final ITRANS = NOTRAN ? 0 : 1;
// Determine the number of right-hand sides to solve at a time.
final NB =
NRHS == 1 ? 1 : max(1, ilaenv(1, 'DGTTRS', TRANS, N, NRHS, -1, -1));
if (NB >= NRHS) {
dgtts2(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB);
} else {
for (var J = 1; J <= NRHS; J += NB) {
final JB = min(NRHS - J + 1, NB);
dgtts2(ITRANS, N, JB, DL, D, DU, DU2, IPIV, B(1, J), LDB);
}
}
}