dla_syrcond function

double dla_syrcond(
  1. String UPLO,
  2. int N,
  3. Matrix<double> A_,
  4. int LDA,
  5. Matrix<double> AF_,
  6. int LDAF,
  7. Array<int> IPIV_,
  8. int CMODE,
  9. Array<double> C_,
  10. Box<int> INFO,
  11. Array<double> WORK_,
  12. Array<int> IWORK_,
)

Implementation

double dla_syrcond(
  final String UPLO,
  final int N,
  final Matrix<double> A_,
  final int LDA,
  final Matrix<double> AF_,
  final int LDAF,
  final Array<int> IPIV_,
  final int CMODE,
  final Array<double> C_,
  final Box<int> INFO,
  final Array<double> WORK_,
  final Array<int> IWORK_,
) {
  final A = A_.having(ld: LDA);
  final AF = AF_.having(ld: LDAF);
  final IPIV = IPIV_.having();
  final C = C_.having();
  final WORK = WORK_.having();
  final IWORK = IWORK_.having();
  // String NORMIN;
  int I, J;
  double
      // SMLNUM,
      TMP;
  bool UP;
  final ISAVE = Array<int>(3);
  final AINVNM = Box(0.0);
  final KASE = Box(0);

  // DLA_SYRCOND = 0.0;,

  INFO.value = 0;
  if (N < 0) {
    INFO.value = -2;
  } else if (LDA < max(1, N)) {
    INFO.value = -4;
  } else if (LDAF < max(1, N)) {
    INFO.value = -6;
  }
  if (INFO.value != 0) {
    xerbla('DLA_SYRCOND', -INFO.value);
    return 0;
  }
  if (N == 0) {
    return 1.0;
  }
  UP = false;
  if (lsame(UPLO, 'U')) UP = true;

  // Compute the equilibration matrix R such that
  // inv(R)*A*C has unit 1-norm.

  if (UP) {
    for (I = 1; I <= N; I++) {
      TMP = 0.0;
      if (CMODE == 1) {
        for (J = 1; J <= I; J++) {
          TMP += (A[J][I] * C[J]).abs();
        }
        for (J = I + 1; J <= N; J++) {
          TMP += (A[I][J] * C[J]).abs();
        }
      } else if (CMODE == 0) {
        for (J = 1; J <= I; J++) {
          TMP += A[J][I].abs();
        }
        for (J = I + 1; J <= N; J++) {
          TMP += A[I][J].abs();
        }
      } else {
        for (J = 1; J <= I; J++) {
          TMP += (A[J][I] / C[J]).abs();
        }
        for (J = I + 1; J <= N; J++) {
          TMP += (A[I][J] / C[J]).abs();
        }
      }
      WORK[2 * N + I] = TMP;
    }
  } else {
    for (I = 1; I <= N; I++) {
      TMP = 0.0;
      if (CMODE == 1) {
        for (J = 1; J <= I; J++) {
          TMP += (A[I][J] * C[J]).abs();
        }
        for (J = I + 1; J <= N; J++) {
          TMP += (A[J][I] * C[J]).abs();
        }
      } else if (CMODE == 0) {
        for (J = 1; J <= I; J++) {
          TMP += A[I][J].abs();
        }
        for (J = I + 1; J <= N; J++) {
          TMP += A[J][I].abs();
        }
      } else {
        for (J = 1; J <= I; J++) {
          TMP += (A[I][J] / C[J]).abs();
        }
        for (J = I + 1; J <= N; J++) {
          TMP += (A[J][I] / C[J]).abs();
        }
      }
      WORK[2 * N + I] = TMP;
    }
  }

  // Estimate the norm of inv(op(A)).

  // SMLNUM = dlamch('Safe minimum');
  AINVNM.value = 0.0;
  // NORMIN = 'N';

  KASE.value = 0;
  while (true) {
    dlacn2(N, WORK(N + 1), WORK, IWORK, AINVNM, KASE, ISAVE);
    if (KASE.value == 0) break;

    if (KASE.value == 2) {
      // Multiply by R.

      for (I = 1; I <= N; I++) {
        WORK[I] *= WORK[2 * N + I];
      }

      if (UP) {
        dsytrs('U', N, 1, AF, LDAF, IPIV, WORK.asMatrix(N), N, INFO);
      } else {
        dsytrs('L', N, 1, AF, LDAF, IPIV, WORK.asMatrix(N), N, INFO);
      }

      // Multiply by inv(C).

      if (CMODE == 1) {
        for (I = 1; I <= N; I++) {
          WORK[I] /= C[I];
        }
      } else if (CMODE == -1) {
        for (I = 1; I <= N; I++) {
          WORK[I] *= C[I];
        }
      }
    } else {
      // Multiply by inv(C**T).

      if (CMODE == 1) {
        for (I = 1; I <= N; I++) {
          WORK[I] /= C[I];
        }
      } else if (CMODE == -1) {
        for (I = 1; I <= N; I++) {
          WORK[I] *= C[I];
        }
      }

      if (UP) {
        dsytrs('U', N, 1, AF, LDAF, IPIV, WORK.asMatrix(N), N, INFO);
      } else {
        dsytrs('L', N, 1, AF, LDAF, IPIV, WORK.asMatrix(N), N, INFO);
      }

      // Multiply by R.

      for (I = 1; I <= N; I++) {
        WORK[I] *= WORK[2 * N + I];
      }
    }
  }

  // Compute the estimate of the reciprocal condition number.

  return AINVNM.value != 0.0 ? 1.0 / AINVNM.value : 0;
}