dlansy function
Implementation
double dlansy(
final String NORM,
final String UPLO,
final int N,
final Matrix<double> A_,
final int LDA,
final Array<double> WORK_,
) {
final A = A_.having(ld: LDA);
final WORK = WORK_.having();
const ONE = 1.0, ZERO = 0.0;
int I, J;
double ABSA, VALUE = 0;
final SCALE = Box(0.0), SUM = Box(0.0);
if (N == 0) {
VALUE = ZERO;
} else if (lsame(NORM, 'M')) {
// Find max(abs(A(i,j))).
VALUE = ZERO;
if (lsame(UPLO, 'U')) {
for (J = 1; J <= N; J++) {
for (I = 1; I <= J; I++) {
SUM.value = A[I][J].abs();
if (VALUE < SUM.value || disnan(SUM.value)) VALUE = SUM.value;
}
}
} else {
for (J = 1; J <= N; J++) {
for (I = J; I <= N; I++) {
SUM.value = A[I][J].abs();
if (VALUE < SUM.value || disnan(SUM.value)) VALUE = SUM.value;
}
}
}
} else if ((lsame(NORM, 'I')) || (lsame(NORM, 'O')) || (NORM == '1')) {
// Find normI(A) ( = norm1(A), since A is symmetric).
VALUE = ZERO;
if (lsame(UPLO, 'U')) {
for (J = 1; J <= N; J++) {
SUM.value = ZERO;
for (I = 1; I <= J - 1; I++) {
ABSA = A[I][J].abs();
SUM.value += ABSA;
WORK[I] += ABSA;
}
WORK[J] = SUM.value + A[J][J].abs();
}
for (I = 1; I <= N; I++) {
SUM.value = WORK[I];
if (VALUE < SUM.value || disnan(SUM.value)) VALUE = SUM.value;
}
} else {
for (I = 1; I <= N; I++) {
WORK[I] = ZERO;
}
for (J = 1; J <= N; J++) {
SUM.value = WORK[J] + A[J][J].abs();
for (I = J + 1; I <= N; I++) {
ABSA = A[I][J].abs();
SUM.value += ABSA;
WORK[I] += ABSA;
}
if (VALUE < SUM.value || disnan(SUM.value)) VALUE = SUM.value;
}
}
} else if ((lsame(NORM, 'F')) || (lsame(NORM, 'E'))) {
// Find normF(A).
SCALE.value = ZERO;
SUM.value = ONE;
if (lsame(UPLO, 'U')) {
for (J = 2; J <= N; J++) {
dlassq(J - 1, A(1, J).asArray(), 1, SCALE, SUM);
}
} else {
for (J = 1; J <= N - 1; J++) {
dlassq(N - J, A(J + 1, J).asArray(), 1, SCALE, SUM);
}
}
SUM.value = 2 * SUM.value;
dlassq(N, A.asArray(), LDA + 1, SCALE, SUM);
VALUE = SCALE.value * sqrt(SUM.value);
}
return VALUE;
}