dlauu2 function
Implementation
void dlauu2(
final String UPLO,
final int N,
final Matrix<double> A_,
final int LDA,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
const ONE = 1.0;
bool UPPER;
int I;
double AII;
// Test the input parameters.
INFO.value = 0;
UPPER = lsame(UPLO, 'U');
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (LDA < max(1, N)) {
INFO.value = -4;
}
if (INFO.value != 0) {
xerbla('DLAUU2', -INFO.value);
return;
}
// Quick return if possible
if (N == 0) return;
if (UPPER) {
// Compute the product U * U**T.
for (I = 1; I <= N; I++) {
AII = A[I][I];
if (I < N) {
A[I][I] =
ddot(N - I + 1, A(I, I).asArray(), LDA, A(I, I).asArray(), LDA);
dgemv('No transpose', I - 1, N - I, ONE, A(1, I + 1), LDA,
A(I, I + 1).asArray(), LDA, AII, A(1, I).asArray(), 1);
} else {
dscal(I, AII, A(1, I).asArray(), 1);
}
}
} else {
// Compute the product L**T * L.
for (I = 1; I <= N; I++) {
AII = A[I][I];
if (I < N) {
A[I][I] = ddot(N - I + 1, A(I, I).asArray(), 1, A(I, I).asArray(), 1);
dgemv('Transpose', N - I, I - 1, ONE, A(I + 1, 1), LDA,
A(I + 1, I).asArray(), 1, AII, A(I, 1).asArray(), LDA);
} else {
dscal(I, AII, A(I, 1).asArray(), LDA);
}
}
}
}