dpbsv function
void
dpbsv()
Implementation
void dpbsv(
final String UPLO,
final int N,
final int KD,
final int NRHS,
final Matrix<double> AB_,
final int LDAB,
final Matrix<double> B_,
final int LDB,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
final B = B_.having(ld: LDB);
// Test the input parameters.
INFO.value = 0;
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (KD < 0) {
INFO.value = -3;
} else if (NRHS < 0) {
INFO.value = -4;
} else if (LDAB < KD + 1) {
INFO.value = -6;
} else if (LDB < max(1, N)) {
INFO.value = -8;
}
if (INFO.value != 0) {
xerbla('DPBSV', -INFO.value);
return;
}
// Compute the Cholesky factorization A = U**T*U or A = L*L**T.
dpbtrf(UPLO, N, KD, AB, LDAB, INFO);
if (INFO.value == 0) {
// Solve the system A*X = B, overwriting B with X.
dpbtrs(UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO);
}
}