dpbsv function

void dpbsv(
  1. String UPLO,
  2. int N,
  3. int KD,
  4. int NRHS,
  5. Matrix<double> AB_,
  6. int LDAB,
  7. Matrix<double> B_,
  8. int LDB,
  9. Box<int> INFO,
)

Implementation

void dpbsv(
  final String UPLO,
  final int N,
  final int KD,
  final int NRHS,
  final Matrix<double> AB_,
  final int LDAB,
  final Matrix<double> B_,
  final int LDB,
  final Box<int> INFO,
) {
  final AB = AB_.having(ld: LDAB);
  final B = B_.having(ld: LDB);

  // Test the input parameters.

  INFO.value = 0;
  if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
    INFO.value = -1;
  } else if (N < 0) {
    INFO.value = -2;
  } else if (KD < 0) {
    INFO.value = -3;
  } else if (NRHS < 0) {
    INFO.value = -4;
  } else if (LDAB < KD + 1) {
    INFO.value = -6;
  } else if (LDB < max(1, N)) {
    INFO.value = -8;
  }
  if (INFO.value != 0) {
    xerbla('DPBSV', -INFO.value);
    return;
  }

  // Compute the Cholesky factorization A = U**T*U or A = L*L**T.

  dpbtrf(UPLO, N, KD, AB, LDAB, INFO);
  if (INFO.value == 0) {
    // Solve the system A*X = B, overwriting B with X.

    dpbtrs(UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO);
  }
}