dpbtf2 function
Implementation
void dpbtf2(
final String UPLO,
final int N,
final int KD,
final Matrix<double> AB_,
final int LDAB,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
const ONE = 1.0, ZERO = 0.0;
bool UPPER;
int J, KLD, KN;
double AJJ;
// Test the input parameters.
INFO.value = 0;
UPPER = lsame(UPLO, 'U');
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (KD < 0) {
INFO.value = -3;
} else if (LDAB < KD + 1) {
INFO.value = -5;
}
if (INFO.value != 0) {
xerbla('DPBTF2', -INFO.value);
return;
}
// Quick return if possible
if (N == 0) return;
KLD = max(1, LDAB - 1);
if (UPPER) {
// Compute the Cholesky factorization A = U**T*U.
for (J = 1; J <= N; J++) {
// Compute U(J,J) and test for non-positive-definiteness.
AJJ = AB[KD + 1][J];
if (AJJ <= ZERO) {
INFO.value = J;
return;
}
AJJ = sqrt(AJJ);
AB[KD + 1][J] = AJJ;
// Compute elements J+1:J+KN of row J and update the
// trailing submatrix within the band.
KN = min(KD, N - J);
if (KN > 0) {
dscal(KN, ONE / AJJ, AB(KD, J + 1).asArray(), KLD);
dsyr('Upper', KN, -ONE, AB(KD, J + 1).asArray(), KLD, AB(KD + 1, J + 1),
KLD);
}
}
} else {
// Compute the Cholesky factorization A = L*L**T.
for (J = 1; J <= N; J++) {
// Compute L(J,J) and test for non-positive-definiteness.
AJJ = AB[1][J];
if (AJJ <= ZERO) {
INFO.value = J;
return;
}
AJJ = sqrt(AJJ);
AB[1][J] = AJJ;
// Compute elements J+1:J+KN of column J and update the
// trailing submatrix within the band.
KN = min(KD, N - J);
if (KN > 0) {
dscal(KN, ONE / AJJ, AB(2, J).asArray(), 1);
dsyr('Lower', KN, -ONE, AB(2, J).asArray(), 1, AB(1, J + 1), KLD);
}
}
}
}