Implementation
void dpotrf(
final String UPLO,
final int N,
final Matrix<double> A_,
final int LDA,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
const ONE = 1.0;
// Test the input parameters.
INFO.value = 0;
final UPPER = lsame(UPLO, 'U');
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (LDA < max(1, N)) {
INFO.value = -4;
}
if (INFO.value != 0) {
xerbla('DPOTRF', -INFO.value);
return;
}
// Quick return if possible
if (N == 0) return;
// Determine the block size for this environment.
final NB = ilaenv(1, 'DPOTRF', UPLO, N, -1, -1, -1);
if (NB <= 1 || NB >= N) {
// Use unblocked code.
dpotrf2(UPLO, N, A, LDA, INFO);
} else {
// Use blocked code.
if (UPPER) {
// Compute the Cholesky factorization A = U**T*U.
for (var J = 1; J <= N; J += NB) {
// Update and factorize the current diagonal block and test
// for non-positive-definiteness.
final JB = min(NB, N - J + 1);
dsyrk('Upper', 'Transpose', JB, J - 1, -ONE, A(1, J), LDA, ONE, A(J, J),
LDA);
dpotrf2('Upper', JB, A(J, J), LDA, INFO);
if (INFO.value != 0) {
INFO.value += J - 1;
return;
}
if (J + JB <= N) {
// Compute the current block row.
dgemm('Transpose', 'No transpose', JB, N - J - JB + 1, J - 1, -ONE,
A(1, J), LDA, A(1, J + JB), LDA, ONE, A(J, J + JB), LDA);
dtrsm('Left', 'Upper', 'Transpose', 'Non-unit', JB, N - J - JB + 1,
ONE, A(J, J), LDA, A(J, J + JB), LDA);
}
}
} else {
// Compute the Cholesky factorization A = L*L**T.
for (var J = 1; J <= N; J += NB) {
// Update and factorize the current diagonal block and test
// for non-positive-definiteness.
final JB = min(NB, N - J + 1);
dsyrk('Lower', 'No transpose', JB, J - 1, -ONE, A(J, 1), LDA, ONE,
A(J, J), LDA);
dpotrf2('Lower', JB, A(J, J), LDA, INFO);
if (INFO.value != 0) {
INFO.value += J - 1;
return;
}
if (J + JB <= N) {
// Compute the current block column.
dgemm('No transpose', 'Transpose', N - J - JB + 1, JB, J - 1, -ONE,
A(J + JB, 1), LDA, A(J, 1), LDA, ONE, A(J + JB, J), LDA);
dtrsm('Right', 'Lower', 'Transpose', 'Non-unit', N - J - JB + 1, JB,
ONE, A(J, J), LDA, A(J + JB, J), LDA);
}
}
}
}
}