dsbev_2stage function
void
dsbev_2stage()
Implementation
void dsbev_2stage(
final String JOBZ,
final String UPLO,
final int N,
final int KD,
final Matrix<double> AB_,
final int LDAB,
final Array<double> W_,
final Matrix<double> Z_,
final int LDZ,
final Array<double> WORK_,
final int LWORK,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
final W = W_.having();
final Z = Z_.having(ld: LDZ);
final WORK = WORK_.having();
const ZERO = 0.0, ONE = 1.0;
bool LOWER, WANTZ, LQUERY;
int IMAX,
INDE,
INDWRK,
ISCALE,
LLWORK,
LWMIN = 0,
LHTRD = 0,
LWTRD,
IB,
INDHOUS;
double ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA = 0, SMLNUM;
final IINFO = Box(0);
// Test the input parameters.
WANTZ = lsame(JOBZ, 'V');
LOWER = lsame(UPLO, 'L');
LQUERY = (LWORK == -1);
INFO.value = 0;
if (!(lsame(JOBZ, 'N'))) {
INFO.value = -1;
} else if (!(LOWER || lsame(UPLO, 'U'))) {
INFO.value = -2;
} else if (N < 0) {
INFO.value = -3;
} else if (KD < 0) {
INFO.value = -4;
} else if (LDAB < KD + 1) {
INFO.value = -6;
} else if (LDZ < 1 || (WANTZ && LDZ < N)) {
INFO.value = -9;
}
if (INFO.value == 0) {
if (N <= 1) {
LWMIN = 1;
WORK[1] = LWMIN.toDouble();
} else {
IB = ilaenv2stage(2, 'DSYTRD_SB2ST', JOBZ, N, KD, -1, -1);
LHTRD = ilaenv2stage(3, 'DSYTRD_SB2ST', JOBZ, N, KD, IB, -1);
LWTRD = ilaenv2stage(4, 'DSYTRD_SB2ST', JOBZ, N, KD, IB, -1);
LWMIN = N + LHTRD + LWTRD;
WORK[1] = LWMIN.toDouble();
}
if (LWORK < LWMIN && !LQUERY) INFO.value = -11;
}
if (INFO.value != 0) {
xerbla('DSBEV_2STAGE', -INFO.value);
return;
} else if (LQUERY) {
return;
}
// Quick return if possible
if (N == 0) return;
if (N == 1) {
if (LOWER) {
W[1] = AB[1][1];
} else {
W[1] = AB[KD + 1][1];
}
if (WANTZ) Z[1][1] = ONE;
return;
}
// Get machine constants.
SAFMIN = dlamch('Safe minimum');
EPS = dlamch('Precision');
SMLNUM = SAFMIN / EPS;
BIGNUM = ONE / SMLNUM;
RMIN = sqrt(SMLNUM);
RMAX = sqrt(BIGNUM);
// Scale matrix to allowable range, if necessary.
ANRM = dlansb('M', UPLO, N, KD, AB, LDAB, WORK);
ISCALE = 0;
if (ANRM > ZERO && ANRM < RMIN) {
ISCALE = 1;
SIGMA = RMIN / ANRM;
} else if (ANRM > RMAX) {
ISCALE = 1;
SIGMA = RMAX / ANRM;
}
if (ISCALE == 1) {
if (LOWER) {
dlascl('B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO);
} else {
dlascl('Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO);
}
}
// Call DSYTRD_SB2ST to reduce symmetric band matrix to tridiagonal form.
INDE = 1;
INDHOUS = INDE + N;
INDWRK = INDHOUS + LHTRD;
LLWORK = LWORK - INDWRK + 1;
dsytrd_sb2st('N', JOBZ, UPLO, N, KD, AB, LDAB, W, WORK(INDE), WORK(INDHOUS),
LHTRD, WORK(INDWRK), LLWORK, IINFO);
// For eigenvalues only, call DSTERF. For eigenvectors, call SSTEQR.
if (!WANTZ) {
dsterf(N, W, WORK(INDE), INFO);
} else {
dsteqr(JOBZ, N, W, WORK(INDE), Z, LDZ, WORK(INDWRK), INFO);
}
// If matrix was scaled, then rescale eigenvalues appropriately.
if (ISCALE == 1) {
if (INFO.value == 0) {
IMAX = N;
} else {
IMAX = INFO.value - 1;
}
dscal(IMAX, ONE / SIGMA, W, 1);
}
// Set WORK(1) to optimal workspace size.
WORK[1] = LWMIN.toDouble();
}