dspgvx function
void
dspgvx()
Implementation
void dspgvx(
final int ITYPE,
final String JOBZ,
final String RANGE,
final String UPLO,
final int N,
final Array<double> AP_,
final Array<double> BP_,
final double VL,
final double VU,
final int IL,
final int IU,
final double ABSTOL,
final Box<int> M,
final Array<double> W_,
final Matrix<double> Z_,
final int LDZ,
final Array<double> WORK_,
final Array<int> IWORK_,
final Array<int> IFAIL_,
final Box<int> INFO,
) {
final AP = AP_.having();
final BP = BP_.having();
final W = W_.having();
final Z = Z_.having(ld: LDZ);
final WORK = WORK_.having();
final IWORK = IWORK_.having();
final IFAIL = IFAIL_.having();
bool ALLEIG, INDEIG, UPPER, VALEIG, WANTZ;
String TRANS;
int J;
// Test the input parameters.
UPPER = lsame(UPLO, 'U');
WANTZ = lsame(JOBZ, 'V');
ALLEIG = lsame(RANGE, 'A');
VALEIG = lsame(RANGE, 'V');
INDEIG = lsame(RANGE, 'I');
INFO.value = 0;
if (ITYPE < 1 || ITYPE > 3) {
INFO.value = -1;
} else if (!(WANTZ || lsame(JOBZ, 'N'))) {
INFO.value = -2;
} else if (!(ALLEIG || VALEIG || INDEIG)) {
INFO.value = -3;
} else if (!(UPPER || lsame(UPLO, 'L'))) {
INFO.value = -4;
} else if (N < 0) {
INFO.value = -5;
} else {
if (VALEIG) {
if (N > 0 && VU <= VL) {
INFO.value = -9;
}
} else if (INDEIG) {
if (IL < 1) {
INFO.value = -10;
} else if (IU < min(N, IL) || IU > N) {
INFO.value = -11;
}
}
}
if (INFO.value == 0) {
if (LDZ < 1 || (WANTZ && LDZ < N)) {
INFO.value = -16;
}
}
if (INFO.value != 0) {
xerbla('DSPGVX', -INFO.value);
return;
}
// Quick return if possible
M.value = 0;
if (N == 0) return;
// Form a Cholesky factorization of B.
dpptrf(UPLO, N, BP, INFO);
if (INFO.value != 0) {
INFO.value = N + INFO.value;
return;
}
// Transform problem to standard eigenvalue problem and solve.
dspgst(ITYPE, UPLO, N, AP, BP, INFO);
dspevx(JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
IWORK, IFAIL, INFO);
if (WANTZ) {
// Backtransform eigenvectors to the original problem.
if (INFO.value > 0) M.value = INFO.value - 1;
if (ITYPE == 1 || ITYPE == 2) {
// For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
// backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
if (UPPER) {
TRANS = 'N';
} else {
TRANS = 'T';
}
for (J = 1; J <= M.value; J++) {
dtpsv(UPLO, TRANS, 'Non-unit', N, BP, Z(1, J).asArray(), 1);
}
} else if (ITYPE == 3) {
// For B*A*x=(lambda)*x;
// backtransform eigenvectors: x = L*y or U**T*y
if (UPPER) {
TRANS = 'T';
} else {
TRANS = 'N';
}
for (J = 1; J <= M.value; J++) {
dtpmv(UPLO, TRANS, 'Non-unit', N, BP, Z(1, J).asArray(), 1);
}
}
}
}