dstev function
void
dstev()
Implementation
void dstev(
final String JOBZ,
final int N,
final Array<double> D_,
final Array<double> E_,
final Matrix<double> Z_,
final int LDZ,
final Array<double> WORK_,
final Box<int> INFO,
) {
final D = D_.having();
final E = E_.having();
final Z = Z_.having(ld: LDZ);
final WORK = WORK_.having();
const ZERO = 0.0, ONE = 1.0;
bool WANTZ;
int IMAX, ISCALE;
double BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA = 0, SMLNUM, TNRM;
// Test the input parameters.
WANTZ = lsame(JOBZ, 'V');
INFO.value = 0;
if (!(WANTZ || lsame(JOBZ, 'N'))) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (LDZ < 1 || (WANTZ && LDZ < N)) {
INFO.value = -6;
}
if (INFO.value != 0) {
xerbla('DSTEV', -INFO.value);
return;
}
// Quick return if possible
if (N == 0) return;
if (N == 1) {
if (WANTZ) Z[1][1] = ONE;
return;
}
// Get machine constants.
SAFMIN = dlamch('Safe minimum');
EPS = dlamch('Precision');
SMLNUM = SAFMIN / EPS;
BIGNUM = ONE / SMLNUM;
RMIN = sqrt(SMLNUM);
RMAX = sqrt(BIGNUM);
// Scale matrix to allowable range, if necessary.
ISCALE = 0;
TNRM = dlanst('M', N, D, E);
if (TNRM > ZERO && TNRM < RMIN) {
ISCALE = 1;
SIGMA = RMIN / TNRM;
} else if (TNRM > RMAX) {
ISCALE = 1;
SIGMA = RMAX / TNRM;
}
if (ISCALE == 1) {
dscal(N, SIGMA, D, 1);
dscal(N - 1, SIGMA, E(1), 1);
}
// For eigenvalues only, call DSTERF. For eigenvalues and
// eigenvectors, call DSTEQR.
if (!WANTZ) {
dsterf(N, D, E, INFO);
} else {
dsteqr('I', N, D, E, Z, LDZ, WORK, INFO);
}
// If matrix was scaled, then rescale eigenvalues appropriately.
if (ISCALE == 1) {
if (INFO.value == 0) {
IMAX = N;
} else {
IMAX = INFO.value - 1;
}
dscal(IMAX, ONE / SIGMA, D, 1);
}
}