dstevx function
void
dstevx()
Implementation
void dstevx(
final String JOBZ,
final String RANGE,
final int N,
final Array<double> D_,
final Array<double> E_,
final double VL,
final double VU,
final int IL,
final int IU,
final double ABSTOL,
final Box<int> M,
final Array<double> W_,
final Matrix<double> Z_,
final int LDZ,
final Array<double> WORK_,
final Array<int> IWORK_,
final Array<int> IFAIL_,
final Box<int> INFO,
) {
final D = D_.having();
final E = E_.having();
final W = W_.having();
final Z = Z_.having(ld: LDZ);
final WORK = WORK_.having();
final IWORK = IWORK_.having();
final IFAIL = IFAIL_.having();
const ZERO = 0.0, ONE = 1.0;
bool ALLEIG, INDEIG, TEST, VALEIG, WANTZ;
String ORDER;
int I, IMAX, INDISP, INDIWO, INDWRK, ISCALE, ITMP1, J, JJ;
double BIGNUM,
EPS,
RMAX,
RMIN,
SAFMIN,
SIGMA = 0,
SMLNUM,
TMP1,
TNRM,
VLL,
VUU;
final NSPLIT = Box(0);
// Test the input parameters.
WANTZ = lsame(JOBZ, 'V');
ALLEIG = lsame(RANGE, 'A');
VALEIG = lsame(RANGE, 'V');
INDEIG = lsame(RANGE, 'I');
INFO.value = 0;
if (!(WANTZ || lsame(JOBZ, 'N'))) {
INFO.value = -1;
} else if (!(ALLEIG || VALEIG || INDEIG)) {
INFO.value = -2;
} else if (N < 0) {
INFO.value = -3;
} else {
if (VALEIG) {
if (N > 0 && VU <= VL) INFO.value = -7;
} else if (INDEIG) {
if (IL < 1 || IL > max(1, N)) {
INFO.value = -8;
} else if (IU < min(N, IL) || IU > N) {
INFO.value = -9;
}
}
}
if (INFO.value == 0) {
if (LDZ < 1 || (WANTZ && LDZ < N)) INFO.value = -14;
}
if (INFO.value != 0) {
xerbla('DSTEVX', -INFO.value);
return;
}
// Quick return if possible
M.value = 0;
if (N == 0) return;
if (N == 1) {
if (ALLEIG || INDEIG) {
M.value = 1;
W[1] = D[1];
} else {
if (VL < D[1] && VU >= D[1]) {
M.value = 1;
W[1] = D[1];
}
}
if (WANTZ) Z[1][1] = ONE;
return;
}
// Get machine constants.
SAFMIN = dlamch('Safe minimum');
EPS = dlamch('Precision');
SMLNUM = SAFMIN / EPS;
BIGNUM = ONE / SMLNUM;
RMIN = sqrt(SMLNUM);
RMAX = min(sqrt(BIGNUM), ONE / sqrt(sqrt(SAFMIN)));
// Scale matrix to allowable range, if necessary.
ISCALE = 0;
if (VALEIG) {
VLL = VL;
VUU = VU;
} else {
VLL = ZERO;
VUU = ZERO;
}
TNRM = dlanst('M', N, D, E);
if (TNRM > ZERO && TNRM < RMIN) {
ISCALE = 1;
SIGMA = RMIN / TNRM;
} else if (TNRM > RMAX) {
ISCALE = 1;
SIGMA = RMAX / TNRM;
}
if (ISCALE == 1) {
dscal(N, SIGMA, D, 1);
dscal(N - 1, SIGMA, E, 1);
if (VALEIG) {
VLL = VL * SIGMA;
VUU = VU * SIGMA;
}
}
// If all eigenvalues are desired and ABSTOL is less than zero, then
// call DSTERF or SSTEQR. If this fails for some eigenvalue, then
// try DSTEBZ.
TEST = false;
if (INDEIG) {
if (IL == 1 && IU == N) {
TEST = true;
}
}
while (true) {
if ((ALLEIG || TEST) && (ABSTOL <= ZERO)) {
dcopy(N, D, 1, W, 1);
dcopy(N - 1, E, 1, WORK, 1);
INDWRK = N + 1;
if (!WANTZ) {
dsterf(N, W, WORK, INFO);
} else {
dsteqr('I', N, W, WORK, Z, LDZ, WORK(INDWRK), INFO);
if (INFO.value == 0) {
for (I = 1; I <= N; I++) {
IFAIL[I] = 0;
}
}
}
if (INFO.value == 0) {
M.value = N;
break;
}
INFO.value = 0;
}
// Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
if (WANTZ) {
ORDER = 'B';
} else {
ORDER = 'E';
}
INDWRK = 1;
INDISP = 1 + N;
INDIWO = INDISP + N;
dstebz(RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IWORK,
IWORK(INDISP), WORK(INDWRK), IWORK(INDIWO), INFO);
if (WANTZ) {
dstein(N, D, E, M.value, W, IWORK(1), IWORK(INDISP), Z, LDZ, WORK(INDWRK),
IWORK(INDIWO), IFAIL, INFO);
}
break;
}
// If matrix was scaled, then rescale eigenvalues appropriately.
if (ISCALE == 1) {
if (INFO.value == 0) {
IMAX = M.value;
} else {
IMAX = INFO.value - 1;
}
dscal(IMAX, ONE / SIGMA, W, 1);
}
// If eigenvalues are not in order, then sort them, along with
// eigenvectors.
if (WANTZ) {
for (J = 1; J <= M.value - 1; J++) {
I = 0;
TMP1 = W[J];
for (JJ = J + 1; JJ <= M.value; JJ++) {
if (W[JJ] < TMP1) {
I = JJ;
TMP1 = W[JJ];
}
}
if (I != 0) {
ITMP1 = IWORK[1 + I - 1];
W[I] = W[J];
IWORK[1 + I - 1] = IWORK[1 + J - 1];
W[J] = TMP1;
IWORK[1 + J - 1] = ITMP1;
dswap(N, Z(1, I).asArray(), 1, Z(1, J).asArray(), 1);
if (INFO.value != 0) {
ITMP1 = IFAIL[I];
IFAIL[I] = IFAIL[J];
IFAIL[J] = ITMP1;
}
}
}
}
}