dsyevr_2stage function
void
dsyevr_2stage()
Implementation
void dsyevr_2stage(
final String JOBZ,
final String RANGE,
final String UPLO,
final int N,
final Matrix<double> A_,
final int LDA,
final double VL,
final double VU,
final int IL,
final int IU,
final double ABSTOL,
final Box<int> M,
final Array<double> W_,
final Matrix<double> Z_,
final int LDZ,
final Array<int> ISUPPZ_,
final Array<double> WORK_,
final int LWORK,
final Array<int> IWORK_,
final int LIWORK,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final W = W_.having();
final Z = Z_.having(ld: LDZ);
final ISUPPZ = ISUPPZ_.having();
final WORK = WORK_.having();
final IWORK = IWORK_.having();
const ZERO = 0.0, ONE = 1.0, TWO = 2.0;
bool ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ;
String ORDER;
int I,
IEEEOK,
IMAX,
INDD,
INDDD,
INDE,
INDEE,
INDIBL,
INDIFL,
INDISP,
INDIWO,
INDTAU,
INDWK,
INDWKN,
ISCALE,
J,
JJ,
LIWMIN,
LLWORK,
LLWRKN,
LWMIN,
LHTRD,
LWTRD,
KD,
IB,
INDHOUS;
double ABSTLL,
ANRM,
BIGNUM,
EPS,
RMAX,
RMIN,
SAFMIN,
SIGMA = 0,
SMLNUM,
TMP1,
VLL = 0,
VUU = 0;
final IINFO = Box(0), NSPLIT = Box(0);
final TRYRAC = Box(false);
// Test the input parameters.
IEEEOK = ilaenv(10, 'DSYEVR', 'N', 1, 2, 3, 4);
LOWER = lsame(UPLO, 'L');
WANTZ = lsame(JOBZ, 'V');
ALLEIG = lsame(RANGE, 'A');
VALEIG = lsame(RANGE, 'V');
INDEIG = lsame(RANGE, 'I');
LQUERY = ((LWORK == -1) || (LIWORK == -1));
KD = ilaenv2stage(1, 'DSYTRD_2STAGE', JOBZ, N, -1, -1, -1);
IB = ilaenv2stage(2, 'DSYTRD_2STAGE', JOBZ, N, KD, -1, -1);
LHTRD = ilaenv2stage(3, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1);
LWTRD = ilaenv2stage(4, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1);
if (N <= 1) {
LWMIN = 1;
LIWMIN = 1;
} else {
LWMIN = max(26 * N, 5 * N + LHTRD + LWTRD);
LIWMIN = 10 * N;
}
INFO.value = 0;
if (!(lsame(JOBZ, 'N'))) {
INFO.value = -1;
} else if (!(ALLEIG || VALEIG || INDEIG)) {
INFO.value = -2;
} else if (!(LOWER || lsame(UPLO, 'U'))) {
INFO.value = -3;
} else if (N < 0) {
INFO.value = -4;
} else if (LDA < max(1, N)) {
INFO.value = -6;
} else {
if (VALEIG) {
if (N > 0 && VU <= VL) INFO.value = -8;
} else if (INDEIG) {
if (IL < 1 || IL > max(1, N)) {
INFO.value = -9;
} else if (IU < min(N, IL) || IU > N) {
INFO.value = -10;
}
}
}
if (INFO.value == 0) {
if (LDZ < 1 || (WANTZ && LDZ < N)) {
INFO.value = -15;
} else if (LWORK < LWMIN && !LQUERY) {
INFO.value = -18;
} else if (LIWORK < LIWMIN && !LQUERY) {
INFO.value = -20;
}
}
if (INFO.value == 0) {
// NB = ilaenv( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
// NB = max( NB, ilaenv( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
// LWKOPT = max( ( NB+1 )*N, LWMIN )
WORK[1] = LWMIN.toDouble();
IWORK[1] = LIWMIN;
}
if (INFO.value != 0) {
xerbla('DSYEVR_2STAGE', -INFO.value);
return;
} else if (LQUERY) {
return;
}
// Quick return if possible
M.value = 0;
if (N == 0) {
WORK[1] = 1;
return;
}
if (N == 1) {
WORK[1] = 1;
if (ALLEIG || INDEIG) {
M.value = 1;
W[1] = A[1][1];
} else {
if (VL < A[1][1] && VU >= A[1][1]) {
M.value = 1;
W[1] = A[1][1];
}
}
if (WANTZ) {
Z[1][1] = ONE;
ISUPPZ[1] = 1;
ISUPPZ[2] = 1;
}
return;
}
// Get machine constants.
SAFMIN = dlamch('Safe minimum');
EPS = dlamch('Precision');
SMLNUM = SAFMIN / EPS;
BIGNUM = ONE / SMLNUM;
RMIN = sqrt(SMLNUM);
RMAX = min(sqrt(BIGNUM), ONE / sqrt(sqrt(SAFMIN)));
// Scale matrix to allowable range, if necessary.
ISCALE = 0;
ABSTLL = ABSTOL;
if (VALEIG) {
VLL = VL;
VUU = VU;
}
ANRM = dlansy('M', UPLO, N, A, LDA, WORK);
if (ANRM > ZERO && ANRM < RMIN) {
ISCALE = 1;
SIGMA = RMIN / ANRM;
} else if (ANRM > RMAX) {
ISCALE = 1;
SIGMA = RMAX / ANRM;
}
if (ISCALE == 1) {
if (LOWER) {
for (J = 1; J <= N; J++) {
dscal(N - J + 1, SIGMA, A(J, J).asArray(), 1);
}
} else {
for (J = 1; J <= N; J++) {
dscal(J, SIGMA, A(1, J).asArray(), 1);
}
}
if (ABSTOL > 0) ABSTLL = ABSTOL * SIGMA;
if (VALEIG) {
VLL = VL * SIGMA;
VUU = VU * SIGMA;
}
}
// Initialize indices into workspaces. Note: The IWORK indices are
// used only if DSTERF or DSTEMR fail.
// WORK[INDTAU:INDTAU+N-1] stores the scalar factors of the
// elementary reflectors used in DSYTRD.
INDTAU = 1;
// WORK[INDD:INDD+N-1] stores the tridiagonal's diagonal entries.
INDD = INDTAU + N;
// WORK[INDE:INDE+N-1] stores the off-diagonal entries of the
// tridiagonal matrix from DSYTRD.
INDE = INDD + N;
// WORK[INDDD:INDDD+N-1] is a copy of the diagonal entries over
// -written by DSTEMR (the DSTERF path copies the diagonal to W).
INDDD = INDE + N;
// WORK[INDEE:INDEE+N-1] is a copy of the off-diagonal entries over
// -written while computing the eigenvalues in DSTERF and DSTEMR.
INDEE = INDDD + N;
// INDHOUS is the starting offset Householder storage of stage 2
INDHOUS = INDEE + N;
// INDWK is the starting offset of the left-over workspace, and
// LLWORK is the remaining workspace size.
INDWK = INDHOUS + LHTRD;
LLWORK = LWORK - INDWK + 1;
// IWORK[INDIBL:INDIBL+M-1] corresponds to IBLOCK in DSTEBZ and
// stores the block indices of each of the M<=N eigenvalues.
INDIBL = 1;
// IWORK[INDISP:INDISP+NSPLIT-1] corresponds to ISPLIT in DSTEBZ and
// stores the starting and finishing indices of each block.
INDISP = INDIBL + N;
// IWORK[INDIFL:INDIFL+N-1] stores the indices of eigenvectors
// that corresponding to eigenvectors that fail to converge in
// DSTEIN. This information is discarded; if any fail, the driver
// returns INFO > 0.
INDIFL = INDISP + N;
// INDIWO is the offset of the remaining integer workspace.
INDIWO = INDIFL + N;
// Call DSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
dsytrd_2stage(JOBZ, UPLO, N, A, LDA, WORK(INDD), WORK(INDE), WORK(INDTAU),
WORK(INDHOUS), LHTRD, WORK(INDWK), LLWORK, IINFO);
// If all eigenvalues are desired
// then call DSTERF or DSTEMR and DORMTR.
while (true) {
if ((ALLEIG || (INDEIG && IL == 1 && IU == N)) && IEEEOK == 1) {
if (!WANTZ) {
dcopy(N, WORK(INDD), 1, W, 1);
dcopy(N - 1, WORK(INDE), 1, WORK(INDEE), 1);
dsterf(N, W, WORK(INDEE), INFO);
} else {
dcopy(N - 1, WORK(INDE), 1, WORK(INDEE), 1);
dcopy(N, WORK(INDD), 1, WORK(INDDD), 1);
if (ABSTOL <= TWO * N * EPS) {
TRYRAC.value = true;
} else {
TRYRAC.value = false;
}
dstemr(JOBZ, 'A', N, WORK(INDDD), WORK(INDEE), VL, VU, IL, IU, M, W, Z,
LDZ, N, ISUPPZ, TRYRAC, WORK(INDWK), LWORK, IWORK, LIWORK, INFO);
// Apply orthogonal matrix used in reduction to tridiagonal
// form to eigenvectors returned by DSTEMR.
if (WANTZ && INFO.value == 0) {
INDWKN = INDE;
LLWRKN = LWORK - INDWKN + 1;
dormtr('L', UPLO, 'N', N, M.value, A, LDA, WORK(INDTAU), Z, LDZ,
WORK(INDWKN), LLWRKN, IINFO);
}
}
if (INFO.value == 0) {
// Everything worked. Skip DSTEBZ/DSTEIN. IWORK[:] are
// undefined.
M.value = N;
break;
}
INFO.value = 0;
}
// Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
// Also call DSTEBZ and DSTEIN if DSTEMR fails.
if (WANTZ) {
ORDER = 'B';
} else {
ORDER = 'E';
}
dstebz(
RANGE,
ORDER,
N,
VLL,
VUU,
IL,
IU,
ABSTLL,
WORK(INDD),
WORK(INDE),
M,
NSPLIT,
W,
IWORK(INDIBL),
IWORK(INDISP),
WORK(INDWK),
IWORK(INDIWO),
INFO);
if (WANTZ) {
dstein(
N,
WORK(INDD),
WORK(INDE),
M.value,
W,
IWORK(INDIBL),
IWORK(INDISP),
Z,
LDZ,
WORK(INDWK),
IWORK(INDIWO),
IWORK(INDIFL),
INFO);
// Apply orthogonal matrix used in reduction to tridiagonal
// form to eigenvectors returned by DSTEIN.
INDWKN = INDE;
LLWRKN = LWORK - INDWKN + 1;
dormtr('L', UPLO, 'N', N, M.value, A, LDA, WORK(INDTAU), Z, LDZ,
WORK(INDWKN), LLWRKN, IINFO);
}
break;
}
// If matrix was scaled, then rescale eigenvalues appropriately.
// Jump here if DSTEMR/DSTEIN succeeded.
if (ISCALE == 1) {
if (INFO.value == 0) {
IMAX = M.value;
} else {
IMAX = INFO.value - 1;
}
dscal(IMAX, ONE / SIGMA, W, 1);
}
// If eigenvalues are not in order, then sort them, along with
// eigenvectors. Note: We do not sort the IFAIL portion of IWORK.
// It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
// not return this detailed information to the user.
if (WANTZ) {
for (J = 1; J <= M.value - 1; J++) {
I = 0;
TMP1 = W[J];
for (JJ = J + 1; JJ <= M.value; JJ++) {
if (W[JJ] < TMP1) {
I = JJ;
TMP1 = W[JJ];
}
}
if (I != 0) {
W[I] = W[J];
W[J] = TMP1;
dswap(N, Z(1, I).asArray(), 1, Z(1, J).asArray(), 1);
}
}
}
// Set WORK[1] to optimal workspace size.
WORK[1] = LWMIN.toDouble();
IWORK[1] = LIWMIN;
}