dsysv function
void
dsysv()
Implementation
void dsysv(
final String UPLO,
final int N,
final int NRHS,
final Matrix<double> A_,
final int LDA,
final Array<int> IPIV_,
final Matrix<double> B_,
final int LDB,
final Array<double> WORK_,
final int LWORK,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final IPIV = IPIV_.having();
final B = B_.having(ld: LDB);
final WORK = WORK_.having();
bool LQUERY;
int LWKOPT = 0;
// Test the input parameters.
INFO.value = 0;
LQUERY = (LWORK == -1);
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (NRHS < 0) {
INFO.value = -3;
} else if (LDA < max(1, N)) {
INFO.value = -5;
} else if (LDB < max(1, N)) {
INFO.value = -8;
} else if (LWORK < 1 && !LQUERY) {
INFO.value = -10;
}
if (INFO.value == 0) {
if (N == 0) {
LWKOPT = 1;
} else {
dsytrf(UPLO, N, A, LDA, IPIV, WORK, -1, INFO);
LWKOPT = WORK[1].toInt();
}
WORK[1] = LWKOPT.toDouble();
}
if (INFO.value != 0) {
xerbla('DSYSV', -INFO.value);
return;
} else if (LQUERY) {
return;
}
// Compute the factorization A = U*D*U**T or A = L*D*L**T.
dsytrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO);
if (INFO.value == 0) {
// Solve the system A*X = B, overwriting B with X.
if (LWORK < N) {
// Solve with TRS ( Use Level BLAS 2)
dsytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO);
} else {
// Solve with TRS2 ( Use Level BLAS 3)
dsytrs2(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO);
}
}
WORK[1] = LWKOPT.toDouble();
}