dsytrf_rk function
void
dsytrf_rk()
Implementation
void dsytrf_rk(
final String UPLO,
final int N,
final Matrix<double> A_,
final int LDA,
final Array<double> E_,
final Array<int> IPIV_,
final Array<double> WORK_,
final int LWORK,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final E = E_.having();
final IPIV = IPIV_.having();
final WORK = WORK_.having();
bool LQUERY, UPPER;
int I, IP, IWS, K, LDWORK, LWKOPT = 0, NB = 0, NBMIN;
final IINFO = Box(0), KB = Box(0);
// Test the input parameters.
INFO.value = 0;
UPPER = lsame(UPLO, 'U');
LQUERY = (LWORK == -1);
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (LDA < max(1, N)) {
INFO.value = -4;
} else if (LWORK < 1 && !LQUERY) {
INFO.value = -8;
}
if (INFO.value == 0) {
// Determine the block size
NB = ilaenv(1, 'DSYTRF_RK', UPLO, N, -1, -1, -1);
LWKOPT = max(1, N * NB);
WORK[1] = LWKOPT.toDouble();
}
if (INFO.value != 0) {
xerbla('DSYTRF_RK', -INFO.value);
return;
} else if (LQUERY) {
return;
}
NBMIN = 2;
LDWORK = N;
if (NB > 1 && NB < N) {
IWS = LDWORK * NB;
if (LWORK < IWS) {
NB = max(LWORK ~/ LDWORK, 1);
NBMIN = max(2, ilaenv(2, 'DSYTRF_RK', UPLO, N, -1, -1, -1));
}
} else {
IWS = 1;
}
if (NB < NBMIN) NB = N;
if (UPPER) {
// Factorize A as U*D*U**T using the upper triangle of A
// K is the main loop index, decreasing from N to 1 in steps of
// KB, where KB is the number of columns factorized by DLASYF_RK;
// KB is either NB or NB-1, or K for the last block
K = N;
while (K >= 1) {
if (K > NB) {
// Factorize columns k-kb+1:k of A and use blocked code to
// update columns 1:k-kb
dlasyf_rk(
UPLO, K, NB, KB, A, LDA, E, IPIV, WORK.asMatrix(), LDWORK, IINFO);
} else {
// Use unblocked code to factorize columns 1:k of A
dsytf2_rk(UPLO, K, A, LDA, E, IPIV, IINFO);
KB.value = K;
}
// Set INFO on the first occurrence of a zero pivot
if (INFO.value == 0 && IINFO.value > 0) INFO.value = IINFO.value;
// No need to adjust IPIV
// Apply permutations to the leading panel 1:k-1
// Read IPIV from the last block factored, i.e.
// indices k-kb+1:k and apply row permutations to the
// last k+1 colunms k+1:N after that block
// (We can do the simple loop over IPIV with decrement -1,
// since the ABS value of IPIV( I ) represents the row index
// of the interchange with row i in both 1x1 and 2x2 pivot cases)
if (K < N) {
for (I = K; I >= (K - KB.value + 1); I--) {
IP = IPIV[I].abs();
if (IP != I) {
dswap(
N - K, A(I, K + 1).asArray(), LDA, A(IP, K + 1).asArray(), LDA);
}
}
}
// Decrease K and return to the start of the main loop
K -= KB.value;
}
} else {
// Factorize A as L*D*L**T using the lower triangle of A
// K is the main loop index, increasing from 1 to N in steps of
// KB, where KB is the number of columns factorized by DLASYF_RK;
// KB is either NB or NB-1, or N-K+1 for the last block
K = 1;
while (K <= N) {
if (K <= N - NB) {
// Factorize columns k:k+kb-1 of A and use blocked code to
// update columns k+kb:n
dlasyf_rk(UPLO, N - K + 1, NB, KB, A(K, K), LDA, E(K), IPIV(K),
WORK.asMatrix(), LDWORK, IINFO);
} else {
// Use unblocked code to factorize columns k:n of A
dsytf2_rk(UPLO, N - K + 1, A(K, K), LDA, E(K), IPIV(K), IINFO);
KB.value = N - K + 1;
}
// Set INFO on the first occurrence of a zero pivot
if (INFO.value == 0 && IINFO.value > 0) INFO.value = IINFO.value + K - 1;
// Adjust IPIV
for (I = K; I <= K + KB.value - 1; I++) {
if (IPIV[I] > 0) {
IPIV[I] += K - 1;
} else {
IPIV[I] -= K - 1;
}
}
// Apply permutations to the leading panel 1:k-1
// Read IPIV from the last block factored, i.e.
// indices k:k+kb-1 and apply row permutations to the
// first k-1 colunms 1:k-1 before that block
// (We can do the simple loop over IPIV with increment 1,
// since the ABS value of IPIV( I ) represents the row index
// of the interchange with row i in both 1x1 and 2x2 pivot cases)
if (K > 1) {
for (I = K; I <= (K + KB.value - 1); I++) {
IP = IPIV[I].abs();
if (IP != I) {
dswap(K - 1, A(I, 1).asArray(), LDA, A(IP, 1).asArray(), LDA);
}
}
}
// Increase K and return to the start of the main loop
K += KB.value;
}
// End Lower
}
WORK[1] = LWKOPT.toDouble();
}