dtfttp function
void
dtfttp()
Implementation
void dtfttp(
final String TRANSR,
final String UPLO,
final int N,
final Array<double> ARF_,
final Array<double> AP_,
final Box<int> INFO,
) {
final ARF = ARF_.having(offset: zeroIndexedArrayOffset);
final AP = AP_.having(offset: zeroIndexedArrayOffset);
bool LOWER, NISODD, NORMALTRANSR;
int N1, N2, K = 0;
int I, J, IJ;
int IJP, JP, LDA, JS;
// Test the input parameters.
INFO.value = 0;
NORMALTRANSR = lsame(TRANSR, 'N');
LOWER = lsame(UPLO, 'L');
if (!NORMALTRANSR && !lsame(TRANSR, 'T')) {
INFO.value = -1;
} else if (!LOWER && !lsame(UPLO, 'U')) {
INFO.value = -2;
} else if (N < 0) {
INFO.value = -3;
}
if (INFO.value != 0) {
xerbla('DTFTTP', -INFO.value);
return;
}
// Quick return if possible
if (N == 0) return;
if (N == 1) {
if (NORMALTRANSR) {
AP[0] = ARF[0];
} else {
AP[0] = ARF[0];
}
return;
}
// Set N1 and N2 depending on LOWER
if (LOWER) {
N2 = N ~/ 2;
N1 = N - N2;
} else {
N1 = N ~/ 2;
N2 = N - N1;
}
// If N is odd, set NISODD = true;
// If N is even, set K = N/2 and NISODD = false;
// set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
// where noe = 0 if n is even, noe = 1 if n is odd
if ((N % 2) == 0) {
K = N ~/ 2;
NISODD = false;
LDA = N + 1;
} else {
NISODD = true;
LDA = N;
}
// ARF^C has lda rows and n+1-noe cols
if (!NORMALTRANSR) LDA = (N + 1) ~/ 2;
// start execution: there are eight cases
if (NISODD) {
// N is odd
if (NORMALTRANSR) {
// N is odd and TRANSR = 'N'
if (LOWER) {
// SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
// T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
// T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
IJP = 0;
JP = 0;
for (J = 0; J <= N2; J++) {
for (I = J; I <= N - 1; I++) {
IJ = I + JP;
AP[IJP] = ARF[IJ];
IJP++;
}
JP += LDA;
}
for (I = 0; I <= N2 - 1; I++) {
for (J = 1 + I; J <= N2; J++) {
IJ = I + J * LDA;
AP[IJP] = ARF[IJ];
IJP++;
}
}
} else {
// SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
// T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
// T1 -> a(n2), T2 -> a(n1), S -> a(0)
IJP = 0;
for (J = 0; J <= N1 - 1; J++) {
IJ = N2 + J;
for (I = 0; I <= J; I++) {
AP[IJP] = ARF[IJ];
IJP++;
IJ += LDA;
}
}
JS = 0;
for (J = N1; J <= N - 1; J++) {
IJ = JS;
for (IJ = JS; IJ <= JS + J; IJ++) {
AP[IJP] = ARF[IJ];
IJP++;
}
JS += LDA;
}
}
} else {
// N is odd and TRANSR = 'T'
if (LOWER) {
// SRPA for LOWER, TRANSPOSE and N is odd
// T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
// T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
IJP = 0;
for (I = 0; I <= N2; I++) {
for (IJ = I * (LDA + 1); IJ <= N * LDA - 1; IJ += LDA) {
AP[IJP] = ARF[IJ];
IJP++;
}
}
JS = 1;
for (J = 0; J <= N2 - 1; J++) {
for (IJ = JS; IJ <= JS + N2 - J - 1; IJ++) {
AP[IJP] = ARF[IJ];
IJP++;
}
JS += LDA + 1;
}
} else {
// SRPA for UPPER, TRANSPOSE and N is odd
// T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
// T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
IJP = 0;
JS = N2 * LDA;
for (J = 0; J <= N1 - 1; J++) {
for (IJ = JS; IJ <= JS + J; IJ++) {
AP[IJP] = ARF[IJ];
IJP++;
}
JS += LDA;
}
for (I = 0; I <= N1; I++) {
for (IJ = I; IJ <= I + (N1 + I) * LDA; IJ += LDA) {
AP[IJP] = ARF[IJ];
IJP++;
}
}
}
}
} else {
// N is even
if (NORMALTRANSR) {
// N is even and TRANSR = 'N'
if (LOWER) {
// SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
// T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
// T1 -> a(1), T2 -> a(0), S -> a(k+1)
IJP = 0;
JP = 0;
for (J = 0; J <= K - 1; J++) {
for (I = J; I <= N - 1; I++) {
IJ = 1 + I + JP;
AP[IJP] = ARF[IJ];
IJP++;
}
JP += LDA;
}
for (I = 0; I <= K - 1; I++) {
for (J = I; J <= K - 1; J++) {
IJ = I + J * LDA;
AP[IJP] = ARF[IJ];
IJP++;
}
}
} else {
// SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
// T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
// T1 -> a(k+1), T2 -> a(k), S -> a(0)
IJP = 0;
for (J = 0; J <= K - 1; J++) {
IJ = K + 1 + J;
for (I = 0; I <= J; I++) {
AP[IJP] = ARF[IJ];
IJP++;
IJ += LDA;
}
}
JS = 0;
for (J = K; J <= N - 1; J++) {
IJ = JS;
for (IJ = JS; IJ <= JS + J; IJ++) {
AP[IJP] = ARF[IJ];
IJP++;
}
JS += LDA;
}
}
} else {
// N is even and TRANSR = 'T'
if (LOWER) {
// SRPA for LOWER, TRANSPOSE and N is even (see paper)
// T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
// T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
IJP = 0;
for (I = 0; I <= K - 1; I++) {
for (IJ = I + (I + 1) * LDA; IJ <= (N + 1) * LDA - 1; IJ += LDA) {
AP[IJP] = ARF[IJ];
IJP++;
}
}
JS = 0;
for (J = 0; J <= K - 1; J++) {
for (IJ = JS; IJ <= JS + K - J - 1; IJ++) {
AP[IJP] = ARF[IJ];
IJP++;
}
JS += LDA + 1;
}
} else {
// SRPA for UPPER, TRANSPOSE and N is even (see paper)
// T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
// T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
IJP = 0;
JS = (K + 1) * LDA;
for (J = 0; J <= K - 1; J++) {
for (IJ = JS; IJ <= JS + J; IJ++) {
AP[IJP] = ARF[IJ];
IJP++;
}
JS += LDA;
}
for (I = 0; I <= K - 1; I++) {
for (IJ = I; IJ <= I + (K + I) * LDA; IJ += LDA) {
AP[IJP] = ARF[IJ];
IJP++;
}
}
}
}
}
}