dtfttr function
void
dtfttr()
Implementation
void dtfttr(
final String TRANSR,
final String UPLO,
final int N,
final Array<double> ARF_,
final Matrix<double> A_,
final int LDA,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA, offset: zeroIndexedMatrixOffset);
final ARF = ARF_.having(offset: zeroIndexedArrayOffset);
bool NISODD;
int N1, N2, K = 0, NT, NX2 = 0, NP1X2 = 0;
int I, J, L, IJ;
// Test the input parameters.
INFO.value = 0;
final NORMALTRANSR = lsame(TRANSR, 'N');
final LOWER = lsame(UPLO, 'L');
if (!NORMALTRANSR && !lsame(TRANSR, 'T')) {
INFO.value = -1;
} else if (!LOWER && !lsame(UPLO, 'U')) {
INFO.value = -2;
} else if (N < 0) {
INFO.value = -3;
} else if (LDA < max(1, N)) {
INFO.value = -6;
}
if (INFO.value != 0) {
xerbla('DTFTTR', -INFO.value);
return;
}
// Quick return if possible
if (N <= 1) {
if (N == 1) {
A[0][0] = ARF[0];
}
return;
}
// Size of array ARF(0:nt-1)
NT = N * (N + 1) ~/ 2;
// set N1 and N2 depending on LOWER: for N even N1=N2=K
if (LOWER) {
N2 = N ~/ 2;
N1 = N - N2;
} else {
N1 = N ~/ 2;
N2 = N - N1;
}
// If N is odd, set NISODD = true , LDA=N+1 and A is (N+1)--by--K2.
// If N is even, set K = N/2 and NISODD = false , LDA=N and A is
// N--by--(N+1)/2.
if ((N % 2) == 0) {
K = N ~/ 2;
NISODD = false;
if (!LOWER) NP1X2 = N + N + 2;
} else {
NISODD = true;
if (!LOWER) NX2 = N + N;
}
if (NISODD) {
// N is odd
if (NORMALTRANSR) {
// N is odd and TRANSR = 'N'
if (LOWER) {
// N is odd, TRANSR = 'N', and UPLO = 'L'
IJ = 0;
for (J = 0; J <= N2; J++) {
for (I = N1; I <= N2 + J; I++) {
A[N2 + J][I] = ARF[IJ];
IJ++;
}
for (I = J; I <= N - 1; I++) {
A[I][J] = ARF[IJ];
IJ++;
}
}
} else {
// N is odd, TRANSR = 'N', and UPLO = 'U'
IJ = NT - N;
for (J = N - 1; J >= N1; J--) {
for (I = 0; I <= J; I++) {
A[I][J] = ARF[IJ];
IJ++;
}
for (L = J - N1; L <= N1 - 1; L++) {
A[J - N1][L] = ARF[IJ];
IJ++;
}
IJ -= NX2;
}
}
} else {
// N is odd and TRANSR = 'T'
if (LOWER) {
// N is odd, TRANSR = 'T', and UPLO = 'L'
IJ = 0;
for (J = 0; J <= N2 - 1; J++) {
for (I = 0; I <= J; I++) {
A[J][I] = ARF[IJ];
IJ++;
}
for (I = N1 + J; I <= N - 1; I++) {
A[I][N1 + J] = ARF[IJ];
IJ++;
}
}
for (J = N2; J <= N - 1; J++) {
for (I = 0; I <= N1 - 1; I++) {
A[J][I] = ARF[IJ];
IJ++;
}
}
} else {
// N is odd, TRANSR = 'T', and UPLO = 'U'
IJ = 0;
for (J = 0; J <= N1; J++) {
for (I = N1; I <= N - 1; I++) {
A[J][I] = ARF[IJ];
IJ++;
}
}
for (J = 0; J <= N1 - 1; J++) {
for (I = 0; I <= J; I++) {
A[I][J] = ARF[IJ];
IJ++;
}
for (L = N2 + J; L <= N - 1; L++) {
A[N2 + J][L] = ARF[IJ];
IJ++;
}
}
}
}
} else {
// N is even
if (NORMALTRANSR) {
// N is even and TRANSR = 'N'
if (LOWER) {
// N is even, TRANSR = 'N', and UPLO = 'L'
IJ = 0;
for (J = 0; J <= K - 1; J++) {
for (I = K; I <= K + J; I++) {
A[K + J][I] = ARF[IJ];
IJ++;
}
for (I = J; I <= N - 1; I++) {
A[I][J] = ARF[IJ];
IJ++;
}
}
} else {
// N is even, TRANSR = 'N', and UPLO = 'U'
IJ = NT - N - 1;
for (J = N - 1; J >= K; J--) {
for (I = 0; I <= J; I++) {
A[I][J] = ARF[IJ];
IJ++;
}
for (L = J - K; L <= K - 1; L++) {
A[J - K][L] = ARF[IJ];
IJ++;
}
IJ -= NP1X2;
}
}
} else {
// N is even and TRANSR = 'T'
if (LOWER) {
// N is even, TRANSR = 'T', and UPLO = 'L'
IJ = 0;
J = K;
for (I = K; I <= N - 1; I++) {
A[I][J] = ARF[IJ];
IJ++;
}
for (J = 0; J <= K - 2; J++) {
for (I = 0; I <= J; I++) {
A[J][I] = ARF[IJ];
IJ++;
}
for (I = K + 1 + J; I <= N - 1; I++) {
A[I][K + 1 + J] = ARF[IJ];
IJ++;
}
}
for (J = K - 1; J <= N - 1; J++) {
for (I = 0; I <= K - 1; I++) {
A[J][I] = ARF[IJ];
IJ++;
}
}
} else {
// N is even, TRANSR = 'T', and UPLO = 'U'
IJ = 0;
for (J = 0; J <= K; J++) {
for (I = K; I <= N - 1; I++) {
A[J][I] = ARF[IJ];
IJ++;
}
}
for (J = 0; J <= K - 2; J++) {
for (I = 0; I <= J; I++) {
A[I][J] = ARF[IJ];
IJ++;
}
for (L = K + 1 + J; L <= N - 1; L++) {
A[K + 1 + J][L] = ARF[IJ];
IJ++;
}
}
// Note that here, on exit of the loop, J = K-1
for (I = 0; I <= J; I++) {
A[I][J] = ARF[IJ];
IJ++;
}
}
}
}
}