zgbcon function
void
zgbcon()
Implementation
void zgbcon(
final String NORM,
final int N,
final int KL,
final int KU,
final Matrix<Complex> AB_,
final int LDAB,
final Array<int> IPIV_,
final double ANORM,
final Box<double> RCOND,
final Array<Complex> WORK_,
final Array<double> RWORK_,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
final IPIV = IPIV_.having();
final WORK = WORK_.having();
final RWORK = RWORK_.having();
const ONE = 1.0, ZERO = 0.0;
bool LNOTI, ONENRM;
String NORMIN;
int IX, J, JP, KASE1, KD, LM;
double SMLNUM;
Complex T;
final ISAVE = Array<int>(3);
final AINVNM = Box(0.0), SCALE = Box(0.0);
final KASE = Box(0);
// Test the input parameters.
INFO.value = 0;
ONENRM = NORM == '1' || lsame(NORM, 'O');
if (!ONENRM && !lsame(NORM, 'I')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (KL < 0) {
INFO.value = -3;
} else if (KU < 0) {
INFO.value = -4;
} else if (LDAB < 2 * KL + KU + 1) {
INFO.value = -6;
} else if (ANORM < ZERO) {
INFO.value = -8;
}
if (INFO.value != 0) {
xerbla('ZGBCON', -INFO.value);
return;
}
// Quick return if possible
RCOND.value = ZERO;
if (N == 0) {
RCOND.value = ONE;
return;
} else if (ANORM == ZERO) {
return;
}
SMLNUM = dlamch('Safe minimum');
// Estimate the norm of inv(A).
AINVNM.value = ZERO;
NORMIN = 'N';
if (ONENRM) {
KASE1 = 1;
} else {
KASE1 = 2;
}
KD = KL + KU + 1;
LNOTI = KL > 0;
KASE.value = 0;
while (true) {
zlacn2(N, WORK(N + 1), WORK, AINVNM, KASE, ISAVE);
if (KASE.value == 0) break;
if (KASE.value == KASE1) {
// Multiply by inv(L).
if (LNOTI) {
for (J = 1; J <= N - 1; J++) {
LM = min(KL, N - J);
JP = IPIV[J];
T = WORK[JP];
if (JP != J) {
WORK[JP] = WORK[J];
WORK[J] = T;
}
zaxpy(LM, -T, AB(KD + 1, J).asArray(), 1, WORK(J + 1), 1);
}
}
// Multiply by inv(U).
zlatbs('Upper', 'No transpose', 'Non-unit', NORMIN, N, KL + KU, AB, LDAB,
WORK, SCALE, RWORK, INFO);
} else {
// Multiply by inv(U**H).
zlatbs('Upper', 'Conjugate transpose', 'Non-unit', NORMIN, N, KL + KU, AB,
LDAB, WORK, SCALE, RWORK, INFO);
// Multiply by inv(L**H).
if (LNOTI) {
for (J = N - 1; J >= 1; J--) {
LM = min(KL, N - J);
WORK[J] =
WORK[J] - zdotc(LM, AB(KD + 1, J).asArray(), 1, WORK(J + 1), 1);
JP = IPIV[J];
if (JP != J) {
T = WORK[JP];
WORK[JP] = WORK[J];
WORK[J] = T;
}
}
}
}
// Divide X by 1/SCALE if doing so will not cause overflow.
NORMIN = 'Y';
if (SCALE.value != ONE) {
IX = izamax(N, WORK, 1);
if (SCALE.value < WORK[IX].cabs1() * SMLNUM || SCALE.value == ZERO) {
return;
}
zdrscl(N, SCALE.value, WORK, 1);
}
}
// Compute the estimate of the reciprocal condition number.
if (AINVNM.value != ZERO) RCOND.value = (ONE / AINVNM.value) / ANORM;
}