zgbtrs function
void
zgbtrs()
Implementation
void zgbtrs(
final String TRANS,
final int N,
final int KL,
final int KU,
final int NRHS,
final Matrix<Complex> AB_,
final int LDAB,
final Array<int> IPIV_,
final Matrix<Complex> B_,
final int LDB,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
final IPIV = IPIV_.having();
final B = B_.having(ld: LDB);
bool LNOTI, NOTRAN;
int I, J, KD, L, LM;
// Test the input parameters.
INFO.value = 0;
NOTRAN = lsame(TRANS, 'N');
if (!NOTRAN && !lsame(TRANS, 'T') && !lsame(TRANS, 'C')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (KL < 0) {
INFO.value = -3;
} else if (KU < 0) {
INFO.value = -4;
} else if (NRHS < 0) {
INFO.value = -5;
} else if (LDAB < (2 * KL + KU + 1)) {
INFO.value = -7;
} else if (LDB < max(1, N)) {
INFO.value = -10;
}
if (INFO.value != 0) {
xerbla('ZGBTRS', -INFO.value);
return;
}
// Quick return if possible
if (N == 0 || NRHS == 0) return;
KD = KU + KL + 1;
LNOTI = KL > 0;
if (NOTRAN) {
// Solve A*X = B.
// Solve L*X = B, overwriting B with X.
// L is represented as a product of permutations and unit lower
// triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),
// where each transformation L(i) is a rank-one modification of
// the identity matrix.
if (LNOTI) {
for (J = 1; J <= N - 1; J++) {
LM = min(KL, N - J);
L = IPIV[J];
if (L != J) zswap(NRHS, B(L, 1).asArray(), LDB, B(J, 1).asArray(), LDB);
zgeru(LM, NRHS, -Complex.one, AB(KD + 1, J).asArray(), 1,
B(J, 1).asArray(), LDB, B(J + 1, 1), LDB);
}
}
for (I = 1; I <= NRHS; I++) {
// Solve U*X = B, overwriting B with X.
ztbsv('Upper', 'No transpose', 'Non-unit', N, KL + KU, AB, LDAB,
B(1, I).asArray(), 1);
}
} else if (lsame(TRANS, 'T')) {
// Solve A**T * X = B.
for (I = 1; I <= NRHS; I++) {
// Solve U**T * X = B, overwriting B with X.
ztbsv('Upper', 'Transpose', 'Non-unit', N, KL + KU, AB, LDAB,
B(1, I).asArray(), 1);
}
// Solve L**T * X = B, overwriting B with X.
if (LNOTI) {
for (J = N - 1; J >= 1; J--) {
LM = min(KL, N - J);
zgemv('Transpose', LM, NRHS, -Complex.one, B(J + 1, 1), LDB,
AB(KD + 1, J).asArray(), 1, Complex.one, B(J, 1).asArray(), LDB);
L = IPIV[J];
if (L != J) zswap(NRHS, B(L, 1).asArray(), LDB, B(J, 1).asArray(), LDB);
}
}
} else {
// Solve A**H * X = B.
for (I = 1; I <= NRHS; I++) {
// Solve U**H * X = B, overwriting B with X.
ztbsv('Upper', 'Conjugate transpose', 'Non-unit', N, KL + KU, AB, LDAB,
B(1, I).asArray(), 1);
}
// Solve L**H * X = B, overwriting B with X.
if (LNOTI) {
for (J = N - 1; J >= 1; J--) {
LM = min(KL, N - J);
zlacgv(NRHS, B(J, 1).asArray(), LDB);
zgemv('Conjugate transpose', LM, NRHS, -Complex.one, B(J + 1, 1), LDB,
AB(KD + 1, J).asArray(), 1, Complex.one, B(J, 1).asArray(), LDB);
zlacgv(NRHS, B(J, 1).asArray(), LDB);
L = IPIV[J];
if (L != J) zswap(NRHS, B(L, 1).asArray(), LDB, B(J, 1).asArray(), LDB);
}
}
}
}