zgehd2 function
void
zgehd2()
Implementation
void zgehd2(
final int N,
final int ILO,
final int IHI,
final Matrix<Complex> A_,
final int LDA,
final Array<Complex> TAU_,
final Array<Complex> WORK_,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final TAU = TAU_.having();
final WORK = WORK_.having();
int I;
final ALPHA = Box(Complex.zero);
// Test the input parameters
INFO.value = 0;
if (N < 0) {
INFO.value = -1;
} else if (ILO < 1 || ILO > max(1, N)) {
INFO.value = -2;
} else if (IHI < min(ILO, N) || IHI > N) {
INFO.value = -3;
} else if (LDA < max(1, N)) {
INFO.value = -5;
}
if (INFO.value != 0) {
xerbla('ZGEHD2', -INFO.value);
return;
}
for (I = ILO; I <= IHI - 1; I++) {
// Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
ALPHA.value = A[I + 1][I];
zlarfg(IHI - I, ALPHA, A(min(I + 2, N), I).asArray(), 1, TAU(I));
A[I + 1][I] = Complex.one;
// Apply H(i) to A(1:ihi,i+1:ihi) from the right
zlarf('Right', IHI, IHI - I, A(I + 1, I).asArray(), 1, TAU[I], A(1, I + 1),
LDA, WORK);
// Apply H(i)**H to A(i+1:ihi,i+1:n) from the left
zlarf('Left', IHI - I, N - I, A(I + 1, I).asArray(), 1, TAU[I].conjugate(),
A(I + 1, I + 1), LDA, WORK);
A[I + 1][I] = ALPHA.value;
}
}