zgeqrt2 function
void
zgeqrt2()
Implementation
void zgeqrt2(
final int M,
final int N,
final Matrix<Complex> A_,
final int LDA,
final Matrix<Complex> T_,
final int LDT,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final T = T_.having(ld: LDT);
int I, K;
Complex AII, ALPHA;
// Test the input arguments
INFO.value = 0;
if (N < 0) {
INFO.value = -2;
} else if (M < N) {
INFO.value = -1;
} else if (LDA < max(1, M)) {
INFO.value = -4;
} else if (LDT < max(1, N)) {
INFO.value = -6;
}
if (INFO.value != 0) {
xerbla('ZGEQRT2', -INFO.value);
return;
}
K = min(M, N);
for (I = 1; I <= K; I++) {
// Generate elem. refl. H(i) to annihilate A(i+1:m,i), tau(I) -> T(I,1)
zlarfg(M - I + 1, A(I, I), A(min(I + 1, M), I).asArray(), 1, T(I, 1));
if (I < N) {
// Apply H(i) to A(I:M,I+1:N) from the left
AII = A[I][I];
A[I][I] = Complex.one;
// W(1:N-I) := A(I:M,I+1:N)^H * A(I:M,I) [W = T(:,N)]
zgemv('C', M - I + 1, N - I, Complex.one, A(I, I + 1), LDA,
A(I, I).asArray(), 1, Complex.zero, T(1, N).asArray(), 1);
// A(I:M,I+1:N) = A(I:m,I+1:N) + alpha*A(I:M,I)*W(1:N-1)^H
ALPHA = -T[I][1].conjugate();
zgerc(M - I + 1, N - I, ALPHA, A(I, I).asArray(), 1, T(1, N).asArray(), 1,
A(I, I + 1), LDA);
A[I][I] = AII;
}
}
for (I = 2; I <= N; I++) {
AII = A[I][I];
A[I][I] = Complex.one;
// T(1:I-1,I) := alpha * A(I:M,1:I-1)**H * A(I:M,I)
ALPHA = -T[I][1];
zgemv('C', M - I + 1, I - 1, ALPHA, A(I, 1), LDA, A(I, I).asArray(), 1,
Complex.zero, T(1, I).asArray(), 1);
A[I][I] = AII;
// T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
ztrmv('U', 'N', 'N', I - 1, T, LDT, T(1, I).asArray(), 1);
// T(I,I) = tau(I)
T[I][I] = T[I][1];
T[I][1] = Complex.zero;
}
}