zgges3 function

void zgges3(
  1. String JOBVSL,
  2. String JOBVSR,
  3. String SORT,
  4. bool SELCTG(
    1. Complex,
    2. Complex
    ),
  5. int N,
  6. Matrix<Complex> A_,
  7. int LDA,
  8. Matrix<Complex> B_,
  9. int LDB,
  10. Box<int> SDIM,
  11. Array<Complex> ALPHA_,
  12. Array<Complex> BETA_,
  13. Matrix<Complex> VSL_,
  14. int LDVSL,
  15. Matrix<Complex> VSR_,
  16. int LDVSR,
  17. Array<Complex> WORK_,
  18. int LWORK,
  19. Array<double> RWORK_,
  20. Array<bool> BWORK_,
  21. Box<int> INFO,
)

Implementation

void zgges3(
  final String JOBVSL,
  final String JOBVSR,
  final String SORT,
  final bool Function(Complex, Complex) SELCTG,
  final int N,
  final Matrix<Complex> A_,
  final int LDA,
  final Matrix<Complex> B_,
  final int LDB,
  final Box<int> SDIM,
  final Array<Complex> ALPHA_,
  final Array<Complex> BETA_,
  final Matrix<Complex> VSL_,
  final int LDVSL,
  final Matrix<Complex> VSR_,
  final int LDVSR,
  final Array<Complex> WORK_,
  final int LWORK,
  final Array<double> RWORK_,
  final Array<bool> BWORK_,
  final Box<int> INFO,
) {
  final A = A_.having(ld: LDA);
  final B = B_.having(ld: LDB);
  final VSL = VSL_.having(ld: LDVSL);
  final VSR = VSR_.having(ld: LDVSR);
  final WORK = WORK_.having();
  final RWORK = RWORK_.having();
  final BWORK = BWORK_.having();
  final ALPHA = ALPHA_.having();
  final BETA = BETA_.having();
  const ZERO = 0.0, ONE = 1.0;
  bool CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL, LQUERY, WANTST;
  int I,
      ICOLS,
      IJOBVL,
      IJOBVR,
      ILEFT,
      IRIGHT,
      IROWS,
      IRWRK,
      ITAU,
      IWRK,
      LWKOPT = 0,
      LWKMIN;
  double ANRM, ANRMTO = 0, BIGNUM, BNRM, BNRMTO = 0, EPS, SMLNUM;
  final IDUM = Array<int>(1);
  final DIF = Array<double>(2);
  final IERR = Box(0), IHI = Box(0), ILO = Box(0);
  final PVSL = Box(0.0), PVSR = Box(0.0);

  // Decode the input arguments

  if (lsame(JOBVSL, 'N')) {
    IJOBVL = 1;
    ILVSL = false;
  } else if (lsame(JOBVSL, 'V')) {
    IJOBVL = 2;
    ILVSL = true;
  } else {
    IJOBVL = -1;
    ILVSL = false;
  }

  if (lsame(JOBVSR, 'N')) {
    IJOBVR = 1;
    ILVSR = false;
  } else if (lsame(JOBVSR, 'V')) {
    IJOBVR = 2;
    ILVSR = true;
  } else {
    IJOBVR = -1;
    ILVSR = false;
  }

  WANTST = lsame(SORT, 'S');

  // Test the input arguments

  INFO.value = 0;
  LQUERY = (LWORK == -1);
  LWKMIN = max(1, 2 * N);

  if (IJOBVL <= 0) {
    INFO.value = -1;
  } else if (IJOBVR <= 0) {
    INFO.value = -2;
  } else if (!WANTST && !lsame(SORT, 'N')) {
    INFO.value = -3;
  } else if (N < 0) {
    INFO.value = -5;
  } else if (LDA < max(1, N)) {
    INFO.value = -7;
  } else if (LDB < max(1, N)) {
    INFO.value = -9;
  } else if (LDVSL < 1 || (ILVSL && LDVSL < N)) {
    INFO.value = -14;
  } else if (LDVSR < 1 || (ILVSR && LDVSR < N)) {
    INFO.value = -16;
  } else if (LWORK < LWKMIN && !LQUERY) {
    INFO.value = -18;
  }

  // Compute workspace

  if (INFO.value == 0) {
    zgeqrf(N, N, B, LDB, WORK, WORK, -1, IERR);
    LWKOPT = max(LWKMIN, N + WORK[1].toInt());
    zunmqr('L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK, -1, IERR);
    LWKOPT = max(LWKOPT, N + WORK[1].toInt());
    if (ILVSL) {
      zungqr(N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR);
      LWKOPT = max(LWKOPT, N + WORK[1].toInt());
    }
    zgghd3(JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL, LDVSL, VSR, LDVSR,
        WORK, -1, IERR);
    LWKOPT = max(LWKOPT, N + WORK[1].toInt());
    zlaqz0('S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, ALPHA, BETA, VSL,
        LDVSL, VSR, LDVSR, WORK, -1, RWORK, 0, IERR);
    LWKOPT = max(LWKOPT, WORK[1].toInt());
    if (WANTST) {
      ztgsen(0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA, BETA, VSL, LDVSL,
          VSR, LDVSR, SDIM, PVSL, PVSR, DIF, WORK, -1, IDUM, 1, IERR);
      LWKOPT = max(LWKOPT, WORK[1].toInt());
    }
    if (N == 0) {
      WORK[1] = Complex.one;
    } else {
      WORK[1] = LWKOPT.toComplex();
    }
  }

  if (INFO.value != 0) {
    xerbla('ZGGES3', -INFO.value);
    return;
  } else if (LQUERY) {
    return;
  }

  // Quick return if possible

  if (N == 0) {
    SDIM.value = 0;
    return;
  }

  // Get machine constants

  EPS = dlamch('P');
  SMLNUM = dlamch('S');
  BIGNUM = ONE / SMLNUM;
  SMLNUM = sqrt(SMLNUM) / EPS;
  BIGNUM = ONE / SMLNUM;

  // Scale A if max element outside range [SMLNUM,BIGNUM]

  ANRM = zlange('M', N, N, A, LDA, RWORK);
  ILASCL = false;
  if (ANRM > ZERO && ANRM < SMLNUM) {
    ANRMTO = SMLNUM;
    ILASCL = true;
  } else if (ANRM > BIGNUM) {
    ANRMTO = BIGNUM;
    ILASCL = true;
  }

  if (ILASCL) zlascl('G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR);

  // Scale B if max element outside range [SMLNUM,BIGNUM]

  BNRM = zlange('M', N, N, B, LDB, RWORK);
  ILBSCL = false;
  if (BNRM > ZERO && BNRM < SMLNUM) {
    BNRMTO = SMLNUM;
    ILBSCL = true;
  } else if (BNRM > BIGNUM) {
    BNRMTO = BIGNUM;
    ILBSCL = true;
  }

  if (ILBSCL) zlascl('G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR);

  // Permute the matrix to make it more nearly triangular

  ILEFT = 1;
  IRIGHT = N + 1;
  IRWRK = IRIGHT + N;
  zggbal('P', N, A, LDA, B, LDB, ILO, IHI, RWORK(ILEFT), RWORK(IRIGHT),
      RWORK(IRWRK), IERR);

  // Reduce B to triangular form (QR decomposition of B)

  IROWS = IHI.value + 1 - ILO.value;
  ICOLS = N + 1 - ILO.value;
  ITAU = 1;
  IWRK = ITAU + IROWS;
  zgeqrf(IROWS, ICOLS, B(ILO.value, ILO.value), LDB, WORK(ITAU), WORK(IWRK),
      LWORK + 1 - IWRK, IERR);

  // Apply the orthogonal transformation to matrix A

  zunmqr(
      'L',
      'C',
      IROWS,
      ICOLS,
      IROWS,
      B(ILO.value, ILO.value),
      LDB,
      WORK(ITAU),
      A(ILO.value, ILO.value),
      LDA,
      WORK(IWRK),
      LWORK + 1 - IWRK,
      IERR);

  // Initialize VSL

  if (ILVSL) {
    zlaset('Full', N, N, Complex.zero, Complex.one, VSL, LDVSL);
    if (IROWS > 1) {
      zlacpy('L', IROWS - 1, IROWS - 1, B(ILO.value + 1, ILO.value), LDB,
          VSL(ILO.value + 1, ILO.value), LDVSL);
    }
    zungqr(IROWS, IROWS, IROWS, VSL(ILO.value, ILO.value), LDVSL, WORK(ITAU),
        WORK(IWRK), LWORK + 1 - IWRK, IERR);
  }

  // Initialize VSR

  if (ILVSR) zlaset('Full', N, N, Complex.zero, Complex.one, VSR, LDVSR);

  // Reduce to generalized Hessenberg form

  zgghd3(JOBVSL, JOBVSR, N, ILO.value, IHI.value, A, LDA, B, LDB, VSL, LDVSL,
      VSR, LDVSR, WORK(IWRK), LWORK + 1 - IWRK, IERR);

  SDIM.value = 0;

  // Perform QZ algorithm, computing Schur vectors if desired

  IWRK = ITAU;
  zlaqz0(
      'S',
      JOBVSL,
      JOBVSR,
      N,
      ILO.value,
      IHI.value,
      A,
      LDA,
      B,
      LDB,
      ALPHA,
      BETA,
      VSL,
      LDVSL,
      VSR,
      LDVSR,
      WORK(IWRK),
      LWORK + 1 - IWRK,
      RWORK(IRWRK),
      0,
      IERR);
  if (IERR.value != 0) {
    if (IERR.value > 0 && IERR.value <= N) {
      INFO.value = IERR.value;
    } else if (IERR.value > N && IERR.value <= 2 * N) {
      INFO.value = IERR.value - N;
    } else {
      INFO.value = N + 1;
    }
    WORK[1] = LWKOPT.toComplex();
    return;
  }

  // Sort eigenvalues ALPHA/BETA if desired

  if (WANTST) {
    // Undo scaling on eigenvalues before selecting

    if (ILASCL) {
      zlascl('G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA.asMatrix(N), N, IERR);
    }
    if (ILBSCL) {
      zlascl('G', 0, 0, BNRM, BNRMTO, N, 1, BETA.asMatrix(N), N, IERR);
    }

    // Select eigenvalues

    for (I = 1; I <= N; I++) {
      BWORK[I] = SELCTG(ALPHA[I], BETA[I]);
    }

    ztgsen(
        0,
        ILVSL,
        ILVSR,
        BWORK,
        N,
        A,
        LDA,
        B,
        LDB,
        ALPHA,
        BETA,
        VSL,
        LDVSL,
        VSR,
        LDVSR,
        SDIM,
        PVSL,
        PVSR,
        DIF,
        WORK(IWRK),
        LWORK - IWRK + 1,
        IDUM,
        1,
        IERR);
    if (IERR.value == 1) INFO.value = N + 3;
  }

  // Apply back-permutation to VSL and VSR

  if (ILVSL) {
    zggbak('P', 'L', N, ILO.value, IHI.value, RWORK(ILEFT), RWORK(IRIGHT), N,
        VSL, LDVSL, IERR);
  }
  if (ILVSR) {
    zggbak('P', 'R', N, ILO.value, IHI.value, RWORK(ILEFT), RWORK(IRIGHT), N,
        VSR, LDVSR, IERR);
  }

  // Undo scaling

  if (ILASCL) {
    zlascl('U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR);
    zlascl('G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA.asMatrix(N), N, IERR);
  }

  if (ILBSCL) {
    zlascl('U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR);
    zlascl('G', 0, 0, BNRMTO, BNRM, N, 1, BETA.asMatrix(N), N, IERR);
  }

  if (WANTST) {
    // Check if reordering is correct

    LASTSL = true;
    SDIM.value = 0;
    for (I = 1; I <= N; I++) {
      CURSL = SELCTG(ALPHA[I], BETA[I]);
      if (CURSL) SDIM.value++;
      if (CURSL && !LASTSL) INFO.value = N + 2;
      LASTSL = CURSL;
    }
  }

  WORK[1] = LWKOPT.toComplex();
}