zhbgvx function
void
zhbgvx(
- String JOBZ,
- String RANGE,
- String UPLO,
- int N,
- int KA,
- int KB,
- Matrix<
Complex> AB_, - int LDAB,
- Matrix<
Complex> BB_, - int LDBB,
- Matrix<
Complex> Q_, - int LDQ,
- double VL,
- double VU,
- int IL,
- int IU,
- double ABSTOL,
- Box<
int> M, - Array<
double> W_, - Matrix<
Complex> Z_, - int LDZ,
- Array<
Complex> WORK_, - Array<
double> RWORK_, - Array<
int> IWORK_, - Array<
int> IFAIL_, - Box<
int> INFO,
Implementation
void zhbgvx(
final String JOBZ,
final String RANGE,
final String UPLO,
final int N,
final int KA,
final int KB,
final Matrix<Complex> AB_,
final int LDAB,
final Matrix<Complex> BB_,
final int LDBB,
final Matrix<Complex> Q_,
final int LDQ,
final double VL,
final double VU,
final int IL,
final int IU,
final double ABSTOL,
final Box<int> M,
final Array<double> W_,
final Matrix<Complex> Z_,
final int LDZ,
final Array<Complex> WORK_,
final Array<double> RWORK_,
final Array<int> IWORK_,
final Array<int> IFAIL_,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
final BB = BB_.having(ld: LDBB);
final Q = Q_.having(ld: LDQ);
final Z = Z_.having(ld: LDZ);
final W = W_.having();
final WORK = WORK_.having();
final RWORK = RWORK_.having();
final IWORK = IWORK_.having();
final IFAIL = IFAIL_.having();
const ZERO = 0.0;
bool ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ;
String ORDER, VECT;
int I, INDD, INDE, INDEE, INDISP, INDIWK, INDRWK, INDWRK, ITMP1, J, JJ;
double TMP1;
final IINFO = Box(0), NSPLIT = Box(0);
// Test the input parameters.
WANTZ = lsame(JOBZ, 'V');
UPPER = lsame(UPLO, 'U');
ALLEIG = lsame(RANGE, 'A');
VALEIG = lsame(RANGE, 'V');
INDEIG = lsame(RANGE, 'I');
INFO.value = 0;
if (!(WANTZ || lsame(JOBZ, 'N'))) {
INFO.value = -1;
} else if (!(ALLEIG || VALEIG || INDEIG)) {
INFO.value = -2;
} else if (!(UPPER || lsame(UPLO, 'L'))) {
INFO.value = -3;
} else if (N < 0) {
INFO.value = -4;
} else if (KA < 0) {
INFO.value = -5;
} else if (KB < 0 || KB > KA) {
INFO.value = -6;
} else if (LDAB < KA + 1) {
INFO.value = -8;
} else if (LDBB < KB + 1) {
INFO.value = -10;
} else if (LDQ < 1 || (WANTZ && LDQ < N)) {
INFO.value = -12;
} else {
if (VALEIG) {
if (N > 0 && VU <= VL) INFO.value = -14;
} else if (INDEIG) {
if (IL < 1 || IL > max(1, N)) {
INFO.value = -15;
} else if (IU < min(N, IL) || IU > N) {
INFO.value = -16;
}
}
}
if (INFO.value == 0) {
if (LDZ < 1 || (WANTZ && LDZ < N)) {
INFO.value = -21;
}
}
if (INFO.value != 0) {
xerbla('ZHBGVX', -INFO.value);
return;
}
// Quick return if possible
M.value = 0;
if (N == 0) return;
// Form a split Cholesky factorization of B.
zpbstf(UPLO, N, KB, BB, LDBB, INFO);
if (INFO.value != 0) {
INFO.value = N + INFO.value;
return;
}
// Transform problem to standard eigenvalue problem.
zhbgst(JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, WORK, RWORK, IINFO);
// Solve the standard eigenvalue problem.
// Reduce Hermitian band matrix to tridiagonal form.
INDD = 1;
INDE = INDD + N;
INDRWK = INDE + N;
INDWRK = 1;
if (WANTZ) {
VECT = 'U';
} else {
VECT = 'N';
}
zhbtrd(VECT, UPLO, N, KA, AB, LDAB, RWORK(INDD), RWORK(INDE), Q, LDQ,
WORK(INDWRK), IINFO);
// If all eigenvalues are desired and ABSTOL is less than or equal
// to zero, then call DSTERF or ZSTEQR. If this fails for some
// eigenvalue, then try DSTEBZ.
TEST = false;
if (INDEIG) {
if (IL == 1 && IU == N) {
TEST = true;
}
}
var success = false;
if ((ALLEIG || TEST) && (ABSTOL <= ZERO)) {
dcopy(N, RWORK(INDD), 1, W, 1);
INDEE = INDRWK + 2 * N;
dcopy(N - 1, RWORK(INDE), 1, RWORK(INDEE), 1);
if (!WANTZ) {
dsterf(N, W, RWORK(INDEE), INFO);
} else {
zlacpy('A', N, N, Q, LDQ, Z, LDZ);
zsteqr(JOBZ, N, W, RWORK(INDEE), Z, LDZ, RWORK(INDRWK), INFO);
if (INFO.value == 0) {
for (I = 1; I <= N; I++) {
IFAIL[I] = 0;
}
}
}
if (INFO.value == 0) {
M.value = N;
success = true;
}
INFO.value = 0;
}
if (!success) {
// Otherwise, call DSTEBZ and, if eigenvectors are desired,
// call ZSTEIN.
if (WANTZ) {
ORDER = 'B';
} else {
ORDER = 'E';
}
INDISP = 1 + N;
INDIWK = INDISP + N;
dstebz(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, RWORK(INDD), RWORK(INDE), M,
NSPLIT, W, IWORK(1), IWORK(INDISP), RWORK(INDRWK), IWORK(INDIWK), INFO);
if (WANTZ) {
zstein(N, RWORK(INDD), RWORK(INDE), M.value, W, IWORK(1), IWORK(INDISP),
Z, LDZ, RWORK(INDRWK), IWORK(INDIWK), IFAIL, INFO);
// Apply unitary matrix used in reduction to tridiagonal
// form to eigenvectors returned by ZSTEIN.
for (J = 1; J <= M.value; J++) {
zcopy(N, Z(1, J).asArray(), 1, WORK(1), 1);
zgemv('N', N, N, Complex.one, Q, LDQ, WORK, 1, Complex.zero,
Z(1, J).asArray(), 1);
}
}
}
// If eigenvalues are not in order, then sort them, along with
// eigenvectors.
if (WANTZ) {
for (J = 1; J <= M.value - 1; J++) {
I = 0;
TMP1 = W[J];
for (JJ = J + 1; JJ <= M.value; JJ++) {
if (W[JJ] < TMP1) {
I = JJ;
TMP1 = W[JJ];
}
}
if (I != 0) {
ITMP1 = IWORK[1 + I - 1];
W[I] = W[J];
IWORK[1 + I - 1] = IWORK[1 + J - 1];
W[J] = TMP1;
IWORK[1 + J - 1] = ITMP1;
zswap(N, Z(1, I).asArray(), 1, Z(1, J).asArray(), 1);
if (INFO.value != 0) {
ITMP1 = IFAIL[I];
IFAIL[I] = IFAIL[J];
IFAIL[J] = ITMP1;
}
}
}
}
}