zheequb function
void
zheequb()
Implementation
void zheequb(
final String UPLO,
final int N,
final Matrix<Complex> A_,
final int LDA,
final Array<double> S_,
final Box<double> SCOND,
final Box<double> AMAX,
final Array<Complex> WORK_,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final WORK = WORK_.having();
final S = S_.having();
const ONE = 1.0, ZERO = 0.0;
const MAX_ITER = 100;
int I, J, ITER;
double AVG = 0,
STD,
TOL,
C0,
C1,
C2,
T,
U,
SI,
D,
BASE,
SMIN,
SMAX,
SMLNUM,
BIGNUM;
bool UP;
final SCALE = Box(0.0), SUMSQ = Box(0.0);
// Test the input parameters.
INFO.value = 0;
if (!(lsame(UPLO, 'U') || lsame(UPLO, 'L'))) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (LDA < max(1, N)) {
INFO.value = -4;
}
if (INFO.value != 0) {
xerbla('ZHEEQUB', -INFO.value);
return;
}
UP = lsame(UPLO, 'U');
AMAX.value = ZERO;
// Quick return if possible.
if (N == 0) {
SCOND.value = ONE;
return;
}
for (I = 1; I <= N; I++) {
S[I] = ZERO;
}
AMAX.value = ZERO;
if (UP) {
for (J = 1; J <= N; J++) {
for (I = 1; I <= J - 1; I++) {
S[I] = max(S[I], A[I][J].cabs1());
S[J] = max(S[J], A[I][J].cabs1());
AMAX.value = max(AMAX.value, A[I][J].cabs1());
}
S[J] = max(S[J], A[J][J].cabs1());
AMAX.value = max(AMAX.value, A[J][J].cabs1());
}
} else {
for (J = 1; J <= N; J++) {
S[J] = max(S[J], A[J][J].cabs1());
AMAX.value = max(AMAX.value, A[J][J].cabs1());
for (I = J + 1; I <= N; I++) {
S[I] = max(S[I], A[I][J].cabs1());
S[J] = max(S[J], A[I][J].cabs1());
AMAX.value = max(AMAX.value, A[I][J].cabs1());
}
}
}
for (J = 1; J <= N; J++) {
S[J] = 1.0 / S[J];
}
TOL = ONE / sqrt(2.0 * N);
for (ITER = 1; ITER <= MAX_ITER; ITER++) {
SCALE.value = 0.0;
SUMSQ.value = 0.0;
// beta = |A|s
for (I = 1; I <= N; I++) {
WORK[I] = Complex.zero;
}
if (UP) {
for (J = 1; J <= N; J++) {
for (I = 1; I <= J - 1; I++) {
WORK[I] += (A[I][J].cabs1() * S[J]).toComplex();
WORK[J] += (A[I][J].cabs1() * S[I]).toComplex();
}
WORK[J] += (A[J][J].cabs1() * S[J]).toComplex();
}
} else {
for (J = 1; J <= N; J++) {
WORK[J] += (A[J][J].cabs1() * S[J]).toComplex();
for (I = J + 1; I <= N; I++) {
WORK[I] += (A[I][J].cabs1() * S[J]).toComplex();
WORK[J] += (A[I][J].cabs1() * S[I]).toComplex();
}
}
}
// avg = s^T beta / n
AVG = 0.0;
for (I = 1; I <= N; I++) {
AVG += (S[I].toComplex() * WORK[I]).real;
}
AVG /= N;
STD = 0.0;
for (I = N + 1; I <= 2 * N; I++) {
WORK[I] = S[I - N].toComplex() * WORK[I - N] - AVG.toComplex();
}
zlassq(N, WORK(N + 1), 1, SCALE, SUMSQ);
STD = SCALE.value * sqrt(SUMSQ.value / N);
if (STD < TOL * AVG) break;
for (I = 1; I <= N; I++) {
T = A[I][I].cabs1();
SI = S[I];
C2 = (N - 1) * T;
C1 = (N - 2) * (WORK[I].real - T * SI);
C0 = -(T * SI) * SI + 2 * WORK[I].real * SI - N * AVG;
D = C1 * C1 - 4 * C0 * C2;
if (D <= 0) {
INFO.value = -1;
return;
}
SI = -2 * C0 / (C1 + sqrt(D));
D = SI - S[I];
U = ZERO;
if (UP) {
for (J = 1; J <= I; J++) {
T = A[J][I].cabs1();
U += S[J] * T;
WORK[J] += (D * T).toComplex();
}
for (J = I + 1; J <= N; J++) {
T = A[I][J].cabs1();
U += S[J] * T;
WORK[J] += (D * T).toComplex();
}
} else {
for (J = 1; J <= I; J++) {
T = A[I][J].cabs1();
U += S[J] * T;
WORK[J] += (D * T).toComplex();
}
for (J = I + 1; J <= N; J++) {
T = A[J][I].cabs1();
U += S[J] * T;
WORK[J] += (D * T).toComplex();
}
}
AVG += (U + WORK[I].real) * D / N;
S[I] = SI;
}
}
SMLNUM = dlamch('SAFEMIN');
BIGNUM = ONE / SMLNUM;
SMIN = BIGNUM;
SMAX = ZERO;
T = ONE / sqrt(AVG);
BASE = dlamch('B');
U = ONE / log(BASE);
for (I = 1; I <= N; I++) {
S[I] = pow(BASE, (U * log(S[I] * T)).toInt()).toDouble();
SMIN = min(SMIN, S[I]);
SMAX = max(SMAX, S[I]);
}
SCOND.value = max(SMIN, SMLNUM) / min(SMAX, BIGNUM);
}