zheev_2stage function
void
zheev_2stage()
Implementation
void zheev_2stage(
final String JOBZ,
final String UPLO,
final int N,
final Matrix<Complex> A_,
final int LDA,
final Array<double> W_,
final Array<Complex> WORK_,
final int LWORK,
final Array<double> RWORK_,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final WORK = WORK_.having();
final RWORK = RWORK_.having();
final W = W_.having();
const ZERO = 0.0, ONE = 1.0;
bool LOWER, LQUERY, WANTZ;
int IMAX,
INDE,
INDTAU,
INDWRK,
ISCALE,
LLWORK,
LWMIN = 0,
LHTRD = 0,
LWTRD,
KD,
IB,
INDHOUS;
double ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA = 0, SMLNUM;
final IINFO = Box(0);
// Test the input parameters.
WANTZ = lsame(JOBZ, 'V');
LOWER = lsame(UPLO, 'L');
LQUERY = (LWORK == -1);
INFO.value = 0;
if (!(lsame(JOBZ, 'N'))) {
INFO.value = -1;
} else if (!(LOWER || lsame(UPLO, 'U'))) {
INFO.value = -2;
} else if (N < 0) {
INFO.value = -3;
} else if (LDA < max(1, N)) {
INFO.value = -5;
}
if (INFO.value == 0) {
KD = ilaenv2stage(1, 'ZHETRD_2STAGE', JOBZ, N, -1, -1, -1);
IB = ilaenv2stage(2, 'ZHETRD_2STAGE', JOBZ, N, KD, -1, -1);
LHTRD = ilaenv2stage(3, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1);
LWTRD = ilaenv2stage(4, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1);
LWMIN = N + LHTRD + LWTRD;
WORK[1] = LWMIN.toComplex();
if (LWORK < LWMIN && !LQUERY) INFO.value = -8;
}
if (INFO.value != 0) {
xerbla('ZHEEV_2STAGE', -INFO.value);
return;
} else if (LQUERY) {
return;
}
// Quick return if possible
if (N == 0) {
return;
}
if (N == 1) {
W[1] = A[1][1].real;
WORK[1] = Complex.one;
if (WANTZ) A[1][1] = Complex.one;
return;
}
// Get machine constants.
SAFMIN = dlamch('Safe minimum');
EPS = dlamch('Precision');
SMLNUM = SAFMIN / EPS;
BIGNUM = ONE / SMLNUM;
RMIN = sqrt(SMLNUM);
RMAX = sqrt(BIGNUM);
// Scale matrix to allowable range, if necessary.
ANRM = zlanhe('M', UPLO, N, A, LDA, RWORK);
ISCALE = 0;
if (ANRM > ZERO && ANRM < RMIN) {
ISCALE = 1;
SIGMA = RMIN / ANRM;
} else if (ANRM > RMAX) {
ISCALE = 1;
SIGMA = RMAX / ANRM;
}
if (ISCALE == 1) zlascl(UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO);
// Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
INDE = 1;
INDTAU = 1;
INDHOUS = INDTAU + N;
INDWRK = INDHOUS + LHTRD;
LLWORK = LWORK - INDWRK + 1;
zhetrd_2stage(JOBZ, UPLO, N, A, LDA, W, RWORK(INDE), WORK(INDTAU),
WORK(INDHOUS), LHTRD, WORK(INDWRK), LLWORK, IINFO);
// For eigenvalues only, call DSTERF. For eigenvectors, first call
// ZUNGTR to generate the unitary matrix, then call ZSTEQR.
if (!WANTZ) {
dsterf(N, W, RWORK(INDE), INFO);
} else {
zungtr(UPLO, N, A, LDA, WORK(INDTAU), WORK(INDWRK), LLWORK, IINFO);
INDWRK = INDE + N;
zsteqr(JOBZ, N, W, RWORK(INDE), A, LDA, RWORK(INDWRK), INFO);
}
// If matrix was scaled, then rescale eigenvalues appropriately.
if (ISCALE == 1) {
if (INFO.value == 0) {
IMAX = N;
} else {
IMAX = INFO.value - 1;
}
dscal(IMAX, ONE / SIGMA, W, 1);
}
// Set WORK(1) to optimal complex workspace size.
WORK[1] = LWMIN.toComplex();
}