zheevr function
void
zheevr(
- String JOBZ,
- String RANGE,
- String UPLO,
- int N,
- Matrix<
Complex> A_, - int LDA,
- double VL,
- double VU,
- int IL,
- int IU,
- double ABSTOL,
- Box<
int> M, - Array<
double> W_, - Matrix<
Complex> Z_, - int LDZ,
- Array<
int> ISUPPZ_, - Array<
Complex> WORK_, - int LWORK,
- Array<
double> RWORK_, - int LRWORK,
- Array<
int> IWORK_, - int LIWORK,
- Box<
int> INFO,
Implementation
void zheevr(
final String JOBZ,
final String RANGE,
final String UPLO,
final int N,
final Matrix<Complex> A_,
final int LDA,
final double VL,
final double VU,
final int IL,
final int IU,
final double ABSTOL,
final Box<int> M,
final Array<double> W_,
final Matrix<Complex> Z_,
final int LDZ,
final Array<int> ISUPPZ_,
final Array<Complex> WORK_,
final int LWORK,
final Array<double> RWORK_,
final int LRWORK,
final Array<int> IWORK_,
final int LIWORK,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final Z = Z_.having(ld: LDZ);
final WORK = WORK_.having();
final W = W_.having();
final RWORK = RWORK_.having();
final IWORK = IWORK_.having();
final ISUPPZ = ISUPPZ_.having();
const ZERO = 0.0, ONE = 1.0, TWO = 2.0;
bool ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG, WANTZ;
String ORDER;
int I,
IEEEOK,
IMAX,
INDIBL,
INDIFL,
INDISP,
INDIWO,
INDRD,
INDRDD,
INDRE,
INDREE,
INDRWK,
INDTAU,
INDWK,
INDWKN,
ISCALE,
ITMP1,
J,
JJ,
LIWMIN,
LLWORK,
LLRWORK,
LLWRKN,
LRWMIN,
LWKOPT = 0,
LWMIN,
NB;
double ABSTLL,
ANRM,
BIGNUM,
EPS,
RMAX,
RMIN,
SAFMIN,
SIGMA = 0,
SMLNUM,
TMP1,
VLL = 0,
VUU = 0;
final IINFO = Box(0), NSPLIT = Box(0);
final TRYRAC = Box(false);
// Test the input parameters.
IEEEOK = ilaenv(10, 'ZHEEVR', 'N', 1, 2, 3, 4);
LOWER = lsame(UPLO, 'L');
WANTZ = lsame(JOBZ, 'V');
ALLEIG = lsame(RANGE, 'A');
VALEIG = lsame(RANGE, 'V');
INDEIG = lsame(RANGE, 'I');
LQUERY = ((LWORK == -1) || (LRWORK == -1) || (LIWORK == -1));
if (N <= 1) {
LWMIN = 1;
LRWMIN = 1;
LIWMIN = 1;
} else {
LWMIN = 2 * N;
LRWMIN = 24 * N;
LIWMIN = 10 * N;
}
INFO.value = 0;
if (!(WANTZ || lsame(JOBZ, 'N'))) {
INFO.value = -1;
} else if (!(ALLEIG || VALEIG || INDEIG)) {
INFO.value = -2;
} else if (!(LOWER || lsame(UPLO, 'U'))) {
INFO.value = -3;
} else if (N < 0) {
INFO.value = -4;
} else if (LDA < max(1, N)) {
INFO.value = -6;
} else {
if (VALEIG) {
if (N > 0 && VU <= VL) INFO.value = -8;
} else if (INDEIG) {
if (IL < 1 || IL > max(1, N)) {
INFO.value = -9;
} else if (IU < min(N, IL) || IU > N) {
INFO.value = -10;
}
}
}
if (INFO.value == 0) {
if (LDZ < 1 || (WANTZ && LDZ < N)) {
INFO.value = -15;
}
}
if (INFO.value == 0) {
NB = ilaenv(1, 'ZHETRD', UPLO, N, -1, -1, -1);
NB = max(NB, ilaenv(1, 'ZUNMTR', UPLO, N, -1, -1, -1));
LWKOPT = max((NB + 1) * N, LWMIN);
WORK[1] = LWKOPT.toComplex();
RWORK[1] = LRWMIN.toDouble();
IWORK[1] = LIWMIN;
if (LWORK < LWMIN && !LQUERY) {
INFO.value = -18;
} else if (LRWORK < LRWMIN && !LQUERY) {
INFO.value = -20;
} else if (LIWORK < LIWMIN && !LQUERY) {
INFO.value = -22;
}
}
if (INFO.value != 0) {
xerbla('ZHEEVR', -INFO.value);
return;
} else if (LQUERY) {
return;
}
// Quick return if possible
M.value = 0;
if (N == 0) {
WORK[1] = Complex.one;
return;
}
if (N == 1) {
WORK[1] = Complex.one;
if (ALLEIG || INDEIG) {
M.value = 1;
W[1] = A[1][1].real;
} else {
if (VL < A[1][1].real && VU >= A[1][1].real) {
M.value = 1;
W[1] = A[1][1].real;
}
}
if (WANTZ) {
Z[1][1] = Complex.one;
ISUPPZ[1] = 1;
ISUPPZ[2] = 1;
}
return;
}
// Get machine constants.
SAFMIN = dlamch('Safe minimum');
EPS = dlamch('Precision');
SMLNUM = SAFMIN / EPS;
BIGNUM = ONE / SMLNUM;
RMIN = sqrt(SMLNUM);
RMAX = min(sqrt(BIGNUM), ONE / sqrt(sqrt(SAFMIN)));
// Scale matrix to allowable range, if necessary.
ISCALE = 0;
ABSTLL = ABSTOL;
if (VALEIG) {
VLL = VL;
VUU = VU;
}
ANRM = zlansy('M', UPLO, N, A, LDA, RWORK);
if (ANRM > ZERO && ANRM < RMIN) {
ISCALE = 1;
SIGMA = RMIN / ANRM;
} else if (ANRM > RMAX) {
ISCALE = 1;
SIGMA = RMAX / ANRM;
}
if (ISCALE == 1) {
if (LOWER) {
for (J = 1; J <= N; J++) {
zdscal(N - J + 1, SIGMA, A(J, J).asArray(), 1);
}
} else {
for (J = 1; J <= N; J++) {
zdscal(J, SIGMA, A(1, J).asArray(), 1);
}
}
if (ABSTOL > 0) ABSTLL = ABSTOL * SIGMA;
if (VALEIG) {
VLL = VL * SIGMA;
VUU = VU * SIGMA;
}
}
// Initialize indices into workspaces. Note: The IWORK indices are
// used only if DSTERF or ZSTEMR fail.
// WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
// elementary reflectors used in ZHETRD.
INDTAU = 1;
// INDWK is the starting offset of the remaining complex workspace,
// and LLWORK is the remaining complex workspace size.
INDWK = INDTAU + N;
LLWORK = LWORK - INDWK + 1;
// RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
// entries.
INDRD = 1;
// RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
// tridiagonal matrix from ZHETRD.
INDRE = INDRD + N;
// RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
// -written by ZSTEMR (the DSTERF path copies the diagonal to W).
INDRDD = INDRE + N;
// RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
// -written while computing the eigenvalues in DSTERF and ZSTEMR.
INDREE = INDRDD + N;
// INDRWK is the starting offset of the left-over real workspace, and
// LLRWORK is the remaining workspace size.
INDRWK = INDREE + N;
LLRWORK = LRWORK - INDRWK + 1;
// IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
// stores the block indices of each of the M<=N eigenvalues.
INDIBL = 1;
// IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
// stores the starting and finishing indices of each block.
INDISP = INDIBL + N;
// IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
// that corresponding to eigenvectors that fail to converge in
// DSTEIN. This information is discarded; if any fail, the driver
// returns INFO > 0.
INDIFL = INDISP + N;
// INDIWO is the offset of the remaining integer workspace.
INDIWO = INDIFL + N;
// Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
zhetrd(UPLO, N, A, LDA, RWORK(INDRD), RWORK(INDRE), WORK(INDTAU), WORK(INDWK),
LLWORK, IINFO);
// If all eigenvalues are desired
// then call DSTERF or ZSTEMR and ZUNMTR.
TEST = false;
if (INDEIG) {
if (IL == 1 && IU == N) {
TEST = true;
}
}
var success = false;
if ((ALLEIG || TEST) && (IEEEOK == 1)) {
if (!WANTZ) {
dcopy(N, RWORK(INDRD), 1, W, 1);
dcopy(N - 1, RWORK(INDRE), 1, RWORK(INDREE), 1);
dsterf(N, W, RWORK(INDREE), INFO);
} else {
dcopy(N - 1, RWORK(INDRE), 1, RWORK(INDREE), 1);
dcopy(N, RWORK(INDRD), 1, RWORK(INDRDD), 1);
if (ABSTOL <= TWO * N * EPS) {
TRYRAC.value = true;
} else {
TRYRAC.value = false;
}
zstemr(
JOBZ,
'A',
N,
RWORK(INDRDD),
RWORK(INDREE),
VL,
VU,
IL,
IU,
M,
W,
Z,
LDZ,
N,
ISUPPZ,
TRYRAC,
RWORK(INDRWK),
LLRWORK,
IWORK,
LIWORK,
INFO);
// Apply unitary matrix used in reduction to tridiagonal
// form to eigenvectors returned by ZSTEMR.
if (WANTZ && INFO.value == 0) {
INDWKN = INDWK;
LLWRKN = LWORK - INDWKN + 1;
zunmtr('L', UPLO, 'N', N, M.value, A, LDA, WORK(INDTAU), Z, LDZ,
WORK(INDWKN), LLWRKN, IINFO);
}
}
if (INFO.value == 0) {
M.value = N;
success = true;
}
INFO.value = 0;
}
if (!success) {
// Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
// Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
if (WANTZ) {
ORDER = 'B';
} else {
ORDER = 'E';
}
dstebz(
RANGE,
ORDER,
N,
VLL,
VUU,
IL,
IU,
ABSTLL,
RWORK(INDRD),
RWORK(INDRE),
M,
NSPLIT,
W,
IWORK(INDIBL),
IWORK(INDISP),
RWORK(INDRWK),
IWORK(INDIWO),
INFO);
if (WANTZ) {
zstein(
N,
RWORK(INDRD),
RWORK(INDRE),
M.value,
W,
IWORK(INDIBL),
IWORK(INDISP),
Z,
LDZ,
RWORK(INDRWK),
IWORK(INDIWO),
IWORK(INDIFL),
INFO);
// Apply unitary matrix used in reduction to tridiagonal
// form to eigenvectors returned by ZSTEIN.
INDWKN = INDWK;
LLWRKN = LWORK - INDWKN + 1;
zunmtr('L', UPLO, 'N', N, M.value, A, LDA, WORK(INDTAU), Z, LDZ,
WORK(INDWKN), LLWRKN, IINFO);
}
// If matrix was scaled, then rescale eigenvalues appropriately.
}
if (ISCALE == 1) {
if (INFO.value == 0) {
IMAX = M.value;
} else {
IMAX = INFO.value - 1;
}
dscal(IMAX, ONE / SIGMA, W, 1);
}
// If eigenvalues are not in order, then sort them, along with
// eigenvectors.
if (WANTZ) {
for (J = 1; J <= M.value - 1; J++) {
I = 0;
TMP1 = W[J];
for (JJ = J + 1; JJ <= M.value; JJ++) {
if (W[JJ] < TMP1) {
I = JJ;
TMP1 = W[JJ];
}
}
if (I != 0) {
ITMP1 = IWORK[INDIBL + I - 1];
W[I] = W[J];
IWORK[INDIBL + I - 1] = IWORK[INDIBL + J - 1];
W[J] = TMP1;
IWORK[INDIBL + J - 1] = ITMP1;
zswap(N, Z(1, I).asArray(), 1, Z(1, J).asArray(), 1);
}
}
}
// Set WORK(1) to optimal workspace size.
WORK[1] = LWKOPT.toComplex();
RWORK[1] = LRWMIN.toDouble();
IWORK[1] = LIWMIN;
}