zheevx_2stage function
void
zheevx_2stage()
Implementation
void zheevx_2stage(
final String JOBZ,
final String RANGE,
final String UPLO,
final int N,
final Matrix<Complex> A_,
final int LDA,
final double VL,
final double VU,
final int IL,
final int IU,
final double ABSTOL,
final Box<int> M,
final Array<double> W_,
final Matrix<Complex> Z_,
final int LDZ,
final Array<Complex> WORK_,
final int LWORK,
final Array<double> RWORK_,
final Array<int> IWORK_,
final Array<int> IFAIL_,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final Z = Z_.having(ld: LDZ);
final WORK = WORK_.having();
final RWORK = RWORK_.having();
final IWORK = IWORK_.having();
final IFAIL = IFAIL_.having();
final W = W_.having();
const ZERO = 0.0, ONE = 1.0;
bool ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG, WANTZ;
String ORDER;
int I,
IMAX,
INDD,
INDE,
INDEE,
INDIBL = 0,
INDISP,
INDIWK,
INDRWK,
INDTAU,
INDWRK,
ISCALE,
ITMP1,
J,
JJ,
LLWORK,
LWMIN = 0,
LHTRD = 0,
LWTRD,
KD,
IB,
INDHOUS;
double ABSTLL,
ANRM,
BIGNUM,
EPS,
RMAX,
RMIN,
SAFMIN,
SIGMA = 0,
SMLNUM,
TMP1,
VLL = 0,
VUU = 0;
final IINFO = Box(0), NSPLIT = Box(0);
// Test the input parameters.
LOWER = lsame(UPLO, 'L');
WANTZ = lsame(JOBZ, 'V');
ALLEIG = lsame(RANGE, 'A');
VALEIG = lsame(RANGE, 'V');
INDEIG = lsame(RANGE, 'I');
LQUERY = (LWORK == -1);
INFO.value = 0;
if (!(lsame(JOBZ, 'N'))) {
INFO.value = -1;
} else if (!(ALLEIG || VALEIG || INDEIG)) {
INFO.value = -2;
} else if (!(LOWER || lsame(UPLO, 'U'))) {
INFO.value = -3;
} else if (N < 0) {
INFO.value = -4;
} else if (LDA < max(1, N)) {
INFO.value = -6;
} else {
if (VALEIG) {
if (N > 0 && VU <= VL) INFO.value = -8;
} else if (INDEIG) {
if (IL < 1 || IL > max(1, N)) {
INFO.value = -9;
} else if (IU < min(N, IL) || IU > N) {
INFO.value = -10;
}
}
}
if (INFO.value == 0) {
if (LDZ < 1 || (WANTZ && LDZ < N)) {
INFO.value = -15;
}
}
if (INFO.value == 0) {
if (N <= 1) {
LWMIN = 1;
WORK[1] = LWMIN.toComplex();
} else {
KD = ilaenv2stage(1, 'ZHETRD_2STAGE', JOBZ, N, -1, -1, -1);
IB = ilaenv2stage(2, 'ZHETRD_2STAGE', JOBZ, N, KD, -1, -1);
LHTRD = ilaenv2stage(3, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1);
LWTRD = ilaenv2stage(4, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1);
LWMIN = N + LHTRD + LWTRD;
WORK[1] = LWMIN.toComplex();
}
if (LWORK < LWMIN && !LQUERY) INFO.value = -17;
}
if (INFO.value != 0) {
xerbla('ZHEEVX_2STAGE', -INFO.value);
return;
} else if (LQUERY) {
return;
}
// Quick return if possible
M.value = 0;
if (N == 0) {
return;
}
if (N == 1) {
if (ALLEIG || INDEIG) {
M.value = 1;
W[1] = A[1][1].real;
} else if (VALEIG) {
if (VL < A[1][1].real && VU >= A[1][1].real) {
M.value = 1;
W[1] = A[1][1].real;
}
}
if (WANTZ) Z[1][1] = Complex.one;
return;
}
// Get machine constants.
SAFMIN = dlamch('Safe minimum');
EPS = dlamch('Precision');
SMLNUM = SAFMIN / EPS;
BIGNUM = ONE / SMLNUM;
RMIN = sqrt(SMLNUM);
RMAX = min(sqrt(BIGNUM), ONE / sqrt(sqrt(SAFMIN)));
// Scale matrix to allowable range, if necessary.
ISCALE = 0;
ABSTLL = ABSTOL;
if (VALEIG) {
VLL = VL;
VUU = VU;
}
ANRM = zlanhe('M', UPLO, N, A, LDA, RWORK);
if (ANRM > ZERO && ANRM < RMIN) {
ISCALE = 1;
SIGMA = RMIN / ANRM;
} else if (ANRM > RMAX) {
ISCALE = 1;
SIGMA = RMAX / ANRM;
}
if (ISCALE == 1) {
if (LOWER) {
for (J = 1; J <= N; J++) {
zdscal(N - J + 1, SIGMA, A(J, J).asArray(), 1);
}
} else {
for (J = 1; J <= N; J++) {
zdscal(J, SIGMA, A(1, J).asArray(), 1);
}
}
if (ABSTOL > 0) ABSTLL = ABSTOL * SIGMA;
if (VALEIG) {
VLL = VL * SIGMA;
VUU = VU * SIGMA;
}
}
// Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
INDD = 1;
INDE = INDD + N;
INDRWK = INDE + N;
INDTAU = 1;
INDHOUS = INDTAU + N;
INDWRK = INDHOUS + LHTRD;
LLWORK = LWORK - INDWRK + 1;
zhetrd_2stage(JOBZ, UPLO, N, A, LDA, RWORK(INDD), RWORK(INDE), WORK(INDTAU),
WORK(INDHOUS), LHTRD, WORK(INDWRK), LLWORK, IINFO);
// If all eigenvalues are desired and ABSTOL is less than or equal to
// zero, then call DSTERF or ZUNGTR and ZSTEQR. If this fails for
// some eigenvalue, then try DSTEBZ.
TEST = false;
if (INDEIG) {
if (IL == 1 && IU == N) {
TEST = true;
}
}
var succeess = false;
if ((ALLEIG || TEST) && (ABSTOL <= ZERO)) {
dcopy(N, RWORK(INDD), 1, W, 1);
INDEE = INDRWK + 2 * N;
if (!WANTZ) {
dcopy(N - 1, RWORK(INDE), 1, RWORK(INDEE), 1);
dsterf(N, W, RWORK(INDEE), INFO);
} else {
zlacpy('A', N, N, A, LDA, Z, LDZ);
zungtr(UPLO, N, Z, LDZ, WORK(INDTAU), WORK(INDWRK), LLWORK, IINFO);
dcopy(N - 1, RWORK(INDE), 1, RWORK(INDEE), 1);
zsteqr(JOBZ, N, W, RWORK(INDEE), Z, LDZ, RWORK(INDRWK), INFO);
if (INFO.value == 0) {
for (I = 1; I <= N; I++) {
IFAIL[I] = 0;
}
}
}
if (INFO.value == 0) {
M.value = N;
succeess = true;
}
INFO.value = 0;
}
if (!succeess) {
// Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
if (WANTZ) {
ORDER = 'B';
} else {
ORDER = 'E';
}
INDIBL = 1;
INDISP = INDIBL + N;
INDIWK = INDISP + N;
dstebz(
RANGE,
ORDER,
N,
VLL,
VUU,
IL,
IU,
ABSTLL,
RWORK(INDD),
RWORK(INDE),
M,
NSPLIT,
W,
IWORK(INDIBL),
IWORK(INDISP),
RWORK(INDRWK),
IWORK(INDIWK),
INFO);
if (WANTZ) {
zstein(N, RWORK(INDD), RWORK(INDE), M.value, W, IWORK(INDIBL),
IWORK(INDISP), Z, LDZ, RWORK(INDRWK), IWORK(INDIWK), IFAIL, INFO);
// Apply unitary matrix used in reduction to tridiagonal
// form to eigenvectors returned by ZSTEIN.
zunmtr('L', UPLO, 'N', N, M.value, A, LDA, WORK(INDTAU), Z, LDZ,
WORK(INDWRK), LLWORK, IINFO);
}
}
// If matrix was scaled, then rescale eigenvalues appropriately.
if (ISCALE == 1) {
if (INFO.value == 0) {
IMAX = M.value;
} else {
IMAX = INFO.value - 1;
}
dscal(IMAX, ONE / SIGMA, W, 1);
}
// If eigenvalues are not in order, then sort them, along with
// eigenvectors.
if (WANTZ) {
for (J = 1; J <= M.value - 1; J++) {
I = 0;
TMP1 = W[J];
for (JJ = J + 1; JJ <= M.value; JJ++) {
if (W[JJ] < TMP1) {
I = JJ;
TMP1 = W[JJ];
}
}
if (I != 0) {
ITMP1 = IWORK[INDIBL + I - 1];
W[I] = W[J];
IWORK[INDIBL + I - 1] = IWORK[INDIBL + J - 1];
W[J] = TMP1;
IWORK[INDIBL + J - 1] = ITMP1;
zswap(N, Z(1, I).asArray(), 1, Z(1, J).asArray(), 1);
if (INFO.value != 0) {
ITMP1 = IFAIL[I];
IFAIL[I] = IFAIL[J];
IFAIL[J] = ITMP1;
}
}
}
}
// Set WORK(1) to optimal complex workspace size.
WORK[1] = LWMIN.toComplex();
}