zhegst function
void
zhegst()
Implementation
void zhegst(
final int ITYPE,
final String UPLO,
final int N,
final Matrix<Complex> A_,
final int LDA,
final Matrix<Complex> B_,
final int LDB,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final B = B_.having(ld: LDB);
const ONE = 1.0;
const HALF = Complex(0.5, 0.0);
bool UPPER;
int K, KB, NB;
// Test the input parameters.
INFO.value = 0;
UPPER = lsame(UPLO, 'U');
if (ITYPE < 1 || ITYPE > 3) {
INFO.value = -1;
} else if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -2;
} else if (N < 0) {
INFO.value = -3;
} else if (LDA < max(1, N)) {
INFO.value = -5;
} else if (LDB < max(1, N)) {
INFO.value = -7;
}
if (INFO.value != 0) {
xerbla('ZHEGST', -INFO.value);
return;
}
// Quick return if possible
if (N == 0) return;
// Determine the block size for this environment.
NB = ilaenv(1, 'ZHEGST', UPLO, N, -1, -1, -1);
if (NB <= 1 || NB >= N) {
// Use unblocked code
zhegs2(ITYPE, UPLO, N, A, LDA, B, LDB, INFO);
} else {
// Use blocked code
if (ITYPE == 1) {
if (UPPER) {
// Compute inv(U**H)*A*inv(U)
for (K = 1; K <= N; K += NB) {
KB = min(N - K + 1, NB);
// Update the upper triangle of A(k:n,k:n)
zhegs2(ITYPE, UPLO, KB, A(K, K), LDA, B(K, K), LDB, INFO);
if (K + KB <= N) {
ztrsm('Left', UPLO, 'Conjugate transpose', 'Non-unit', KB,
N - K - KB + 1, Complex.one, B(K, K), LDB, A(K, K + KB), LDA);
zhemm('Left', UPLO, KB, N - K - KB + 1, -HALF, A(K, K), LDA,
B(K, K + KB), LDB, Complex.one, A(K, K + KB), LDA);
zher2k(
UPLO,
'Conjugate transpose',
N - K - KB + 1,
KB,
-Complex.one,
A(K, K + KB),
LDA,
B(K, K + KB),
LDB,
ONE,
A(K + KB, K + KB),
LDA);
zhemm('Left', UPLO, KB, N - K - KB + 1, -HALF, A(K, K), LDA,
B(K, K + KB), LDB, Complex.one, A(K, K + KB), LDA);
ztrsm('Right', UPLO, 'No transpose', 'Non-unit', KB, N - K - KB + 1,
Complex.one, B(K + KB, K + KB), LDB, A(K, K + KB), LDA);
}
}
} else {
// Compute inv(L)*A*inv(L**H)
for (K = 1; K <= N; K += NB) {
KB = min(N - K + 1, NB);
// Update the lower triangle of A(k:n,k:n)
zhegs2(ITYPE, UPLO, KB, A(K, K), LDA, B(K, K), LDB, INFO);
if (K + KB <= N) {
ztrsm(
'Right',
UPLO,
'Conjugate transpose',
'Non-unit',
N - K - KB + 1,
KB,
Complex.one,
B(K, K),
LDB,
A(K + KB, K),
LDA);
zhemm('Right', UPLO, N - K - KB + 1, KB, -HALF, A(K, K), LDA,
B(K + KB, K), LDB, Complex.one, A(K + KB, K), LDA);
zher2k(
UPLO,
'No transpose',
N - K - KB + 1,
KB,
-Complex.one,
A(K + KB, K),
LDA,
B(K + KB, K),
LDB,
ONE,
A(K + KB, K + KB),
LDA);
zhemm('Right', UPLO, N - K - KB + 1, KB, -HALF, A(K, K), LDA,
B(K + KB, K), LDB, Complex.one, A(K + KB, K), LDA);
ztrsm('Left', UPLO, 'No transpose', 'Non-unit', N - K - KB + 1, KB,
Complex.one, B(K + KB, K + KB), LDB, A(K + KB, K), LDA);
}
}
}
} else {
if (UPPER) {
// Compute U*A*U**H
for (K = 1; K <= N; K += NB) {
KB = min(N - K + 1, NB);
// Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
ztrmm('Left', UPLO, 'No transpose', 'Non-unit', K - 1, KB,
Complex.one, B, LDB, A(1, K), LDA);
zhemm('Right', UPLO, K - 1, KB, HALF, A(K, K), LDA, B(1, K), LDB,
Complex.one, A(1, K), LDA);
zher2k(UPLO, 'No transpose', K - 1, KB, Complex.one, A(1, K), LDA,
B(1, K), LDB, ONE, A, LDA);
zhemm('Right', UPLO, K - 1, KB, HALF, A(K, K), LDA, B(1, K), LDB,
Complex.one, A(1, K), LDA);
ztrmm('Right', UPLO, 'Conjugate transpose', 'Non-unit', K - 1, KB,
Complex.one, B(K, K), LDB, A(1, K), LDA);
zhegs2(ITYPE, UPLO, KB, A(K, K), LDA, B(K, K), LDB, INFO);
}
} else {
// Compute L**H*A*L
for (K = 1; K <= N; K += NB) {
KB = min(N - K + 1, NB);
// Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
ztrmm('Right', UPLO, 'No transpose', 'Non-unit', KB, K - 1,
Complex.one, B, LDB, A(K, 1), LDA);
zhemm('Left', UPLO, KB, K - 1, HALF, A(K, K), LDA, B(K, 1), LDB,
Complex.one, A(K, 1), LDA);
zher2k(UPLO, 'Conjugate transpose', K - 1, KB, Complex.one, A(K, 1),
LDA, B(K, 1), LDB, ONE, A, LDA);
zhemm('Left', UPLO, KB, K - 1, HALF, A(K, K), LDA, B(K, 1), LDB,
Complex.one, A(K, 1), LDA);
ztrmm('Left', UPLO, 'Conjugate transpose', 'Non-unit', KB, K - 1,
Complex.one, B(K, K), LDB, A(K, 1), LDA);
zhegs2(ITYPE, UPLO, KB, A(K, K), LDA, B(K, K), LDB, INFO);
}
}
}
}
}