zhesv_aa function
void
zhesv_aa()
Implementation
void zhesv_aa(
final String UPLO,
final int N,
final int NRHS,
final Matrix<Complex> A_,
final int LDA,
final Array<int> IPIV_,
final Matrix<Complex> B_,
final int LDB,
final Array<Complex> WORK_,
final int LWORK,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final IPIV = IPIV_.having();
final B = B_.having(ld: LDB);
final WORK = WORK_.having();
bool LQUERY;
int LWKMIN, LWKOPT = 0, LWKOPT_HETRF, LWKOPT_HETRS;
// Test the input parameters.
INFO.value = 0;
LQUERY = (LWORK == -1);
LWKMIN = max(1, max(2 * N, 3 * N - 2));
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (NRHS < 0) {
INFO.value = -3;
} else if (LDA < max(1, N)) {
INFO.value = -5;
} else if (LDB < max(1, N)) {
INFO.value = -8;
} else if (LWORK < LWKMIN && !LQUERY) {
INFO.value = -10;
}
if (INFO.value == 0) {
zhetrf_aa(UPLO, N, A, LDA, IPIV, WORK, -1, INFO);
LWKOPT_HETRF = WORK[1].toInt();
zhetrs_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, -1, INFO);
LWKOPT_HETRS = WORK[1].toInt();
LWKOPT = max(LWKMIN, max(LWKOPT_HETRF, LWKOPT_HETRS));
WORK[1] = LWKOPT.toComplex();
}
if (INFO.value != 0) {
xerbla('ZHESV_AA', -INFO.value);
return;
} else if (LQUERY) {
return;
}
// Compute the factorization A = U**H*T*U or A = L*T*L**H.
zhetrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO);
if (INFO.value == 0) {
// Solve the system A*X = B, overwriting B with X.
zhetrs_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO);
}
WORK[1] = LWKOPT.toComplex();
}