zhetd2 function
void
zhetd2()
Implementation
void zhetd2(
final String UPLO,
final int N,
final Matrix<Complex> A_,
final int LDA,
final Array<double> D_,
final Array<double> E_,
final Array<Complex> TAU_,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final TAU = TAU_.having();
final D = D_.having();
final E = E_.having();
const HALF = Complex(0.5, 0.0);
bool UPPER;
int I;
final ALPHA = Box(Complex.zero), TAUI = Box(Complex.zero);
// Test the input parameters
INFO.value = 0;
UPPER = lsame(UPLO, 'U');
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (LDA < max(1, N)) {
INFO.value = -4;
}
if (INFO.value != 0) {
xerbla('ZHETD2', -INFO.value);
return;
}
// Quick return if possible
if (N <= 0) return;
if (UPPER) {
// Reduce the upper triangle of A
A[N][N] = A[N][N].real.toComplex();
for (I = N - 1; I >= 1; I--) {
// Generate elementary reflector H(i) = I - tau * v * v**H
// to annihilate A(1:i-1,i+1)
ALPHA.value = A[I][I + 1];
zlarfg(I, ALPHA, A(1, I + 1).asArray(), 1, TAUI);
E[I] = ALPHA.value.real;
if (TAUI.value != Complex.zero) {
// Apply H(i) from both sides to A(1:i,1:i)
A[I][I + 1] = Complex.one;
// Compute x := tau * A * v storing x in TAU(1:i)
zhemv(UPLO, I, TAUI.value, A, LDA, A(1, I + 1).asArray(), 1,
Complex.zero, TAU, 1);
// Compute w := x - 1/2 * tau * (x**H * v) * v
ALPHA.value =
-HALF * TAUI.value * zdotc(I, TAU, 1, A(1, I + 1).asArray(), 1);
zaxpy(I, ALPHA.value, A(1, I + 1).asArray(), 1, TAU, 1);
// Apply the transformation as a rank-2 update:
// A := A - v * w**H - w * v**H
zher2(UPLO, I, -Complex.one, A(1, I + 1).asArray(), 1, TAU, 1, A, LDA);
} else {
A[I][I] = A[I][I].real.toComplex();
}
A[I][I + 1] = E[I].toComplex();
D[I + 1] = A[I + 1][I + 1].real;
TAU[I] = TAUI.value;
}
D[1] = A[1][1].real;
} else {
// Reduce the lower triangle of A
A[1][1] = A[1][1].real.toComplex();
for (I = 1; I <= N - 1; I++) {
// Generate elementary reflector H(i) = I - tau * v * v**H
// to annihilate A(i+2:n,i)
ALPHA.value = A[I + 1][I];
zlarfg(N - I, ALPHA, A(min(I + 2, N), I).asArray(), 1, TAUI);
E[I] = ALPHA.value.real;
if (TAUI.value != Complex.zero) {
// Apply H(i) from both sides to A(i+1:n,i+1:n)
A[I + 1][I] = Complex.one;
// Compute x := tau * A * v storing y in TAU(i:n-1)
zhemv(UPLO, N - I, TAUI.value, A(I + 1, I + 1), LDA,
A(I + 1, I).asArray(), 1, Complex.zero, TAU(I), 1);
// Compute w := x - 1/2 * tau * (x**H * v) * v
ALPHA.value = -HALF *
TAUI.value *
zdotc(N - I, TAU(I), 1, A(I + 1, I).asArray(), 1);
zaxpy(N - I, ALPHA.value, A(I + 1, I).asArray(), 1, TAU(I), 1);
// Apply the transformation as a rank-2 update:
// A := A - v * w**H - w * v**H
zher2(UPLO, N - I, -Complex.one, A(I + 1, I).asArray(), 1, TAU(I), 1,
A(I + 1, I + 1), LDA);
} else {
A[I + 1][I + 1] = A[I + 1][I + 1].real.toComplex();
}
A[I + 1][I] = E[I].toComplex();
D[I] = A[I][I].real;
TAU[I] = TAUI.value;
}
D[N] = A[N][N].real;
}
}