Implementation
void zhetf2(
final String UPLO,
final int N,
final Matrix<Complex> A_,
final int LDA,
final Array<int> IPIV_,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final IPIV = IPIV_.having();
const ZERO = 0.0, ONE = 1.0;
const EIGHT = 8.0, SEVTEN = 17.0;
bool UPPER;
int I, IMAX = 0, J, JMAX, K, KK, KP, KSTEP;
double ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX, TT;
Complex D12, D21, T, WK, WKM1, WKP1;
// Test the input parameters.
INFO.value = 0;
UPPER = lsame(UPLO, 'U');
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (LDA < max(1, N)) {
INFO.value = -4;
}
if (INFO.value != 0) {
xerbla('ZHETF2', -INFO.value);
return;
}
// Initialize ALPHA for use in choosing pivot block size.
ALPHA = (ONE + sqrt(SEVTEN)) / EIGHT;
if (UPPER) {
// Factorize A as U*D*U**H using the upper triangle of A
// K is the main loop index, decreasing from N to 1 in steps of
// 1 or 2
K = N;
while (K >= 1) {
KSTEP = 1;
// Determine rows and columns to be interchanged and whether
// a 1-by-1 or 2-by-2 pivot block will be used
ABSAKK = A[K][K].real.abs();
// IMAX is the row-index of the largest off-diagonal element in
// column K, and COLMAX is its absolute value.
// Determine both COLMAX and IMAX.
if (K > 1) {
IMAX = izamax(K - 1, A(1, K).asArray(), 1);
COLMAX = A[IMAX][K].cabs1();
} else {
COLMAX = ZERO;
}
if ((max(ABSAKK, COLMAX) == ZERO) || disnan(ABSAKK)) {
// Column K is zero or underflow, or contains a NaN:
// set INFO and continue
if (INFO.value == 0) INFO.value = K;
KP = K;
A[K][K] = A[K][K].real.toComplex();
} else {
// Test for interchange
if (ABSAKK >= ALPHA * COLMAX) {
// no interchange, use 1-by-1 pivot block
KP = K;
} else {
// JMAX is the column-index of the largest off-diagonal
// element in row IMAX, and ROWMAX is its absolute value.
// Determine only ROWMAX.
JMAX = IMAX + izamax(K - IMAX, A(IMAX, IMAX + 1).asArray(), LDA);
ROWMAX = A[IMAX][JMAX].cabs1();
if (IMAX > 1) {
JMAX = izamax(IMAX - 1, A(1, IMAX).asArray(), 1);
ROWMAX = max(ROWMAX, A[JMAX][IMAX].cabs1());
}
if (ABSAKK >= ALPHA * COLMAX * (COLMAX / ROWMAX)) {
// no interchange, use 1-by-1 pivot block
KP = K;
} else if (A[IMAX][IMAX].real.abs() >= ALPHA * ROWMAX) {
// interchange rows and columns K and IMAX, use 1-by-1
// pivot block
KP = IMAX;
} else {
// interchange rows and columns K-1 and IMAX, use 2-by-2
// pivot block
KP = IMAX;
KSTEP = 2;
}
}
KK = K - KSTEP + 1;
if (KP != KK) {
// Interchange rows and columns KK and KP in the leading
// submatrix A(1:k,1:k)
zswap(KP - 1, A(1, KK).asArray(), 1, A(1, KP).asArray(), 1);
for (J = KP + 1; J <= KK - 1; J++) {
T = A[J][KK].conjugate();
A[J][KK] = A[KP][J].conjugate();
A[KP][J] = T;
}
A[KP][KK] = A[KP][KK].conjugate();
R1 = A[KK][KK].real;
A[KK][KK] = A[KP][KP].real.toComplex();
A[KP][KP] = R1.toComplex();
if (KSTEP == 2) {
A[K][K] = A[K][K].real.toComplex();
T = A[K - 1][K];
A[K - 1][K] = A[KP][K];
A[KP][K] = T;
}
} else {
A[K][K] = A[K][K].real.toComplex();
if (KSTEP == 2) A[K - 1][K - 1] = A[K - 1][K - 1].real.toComplex();
}
// Update the leading submatrix
if (KSTEP == 1) {
// 1-by-1 pivot block D(k): column k now holds
//
// W(k) = U(k)*D(k)
//
// where U(k) is the k-th column of U
// Perform a rank-1 update of A(1:k-1,1:k-1) as
//
// A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
R1 = ONE / A[K][K].real;
zher(UPLO, K - 1, -R1, A(1, K).asArray(), 1, A, LDA);
// Store U(k) in column k
zdscal(K - 1, R1, A(1, K).asArray(), 1);
} else {
// 2-by-2 pivot block D(k): columns k and k-1 now hold
//
// ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
//
// where U(k) and U(k-1) are the k-th and (k-1)-th columns
// of U
// Perform a rank-2 update of A(1:k-2,1:k-2) as
//
// A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
// = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
if (K > 2) {
D = dlapy2(A[K - 1][K].real, A[K - 1][K].imaginary);
D22 = A[K - 1][K - 1].real / D;
D11 = A[K][K].real / D;
TT = ONE / (D11 * D22 - ONE);
D12 = A[K - 1][K] / D.toComplex();
D = TT / D;
for (J = K - 2; J >= 1; J--) {
WKM1 = D.toComplex() *
(D11.toComplex() * A[J][K - 1] - D12.conjugate() * A[J][K]);
WK = D.toComplex() *
(D22.toComplex() * A[J][K] - D12 * A[J][K - 1]);
for (I = J; I >= 1; I--) {
A[I][J] -=
A[I][K] * WK.conjugate() + A[I][K - 1] * WKM1.conjugate();
}
A[J][K] = WK;
A[J][K - 1] = WKM1;
A[J][J] = A[J][J].real.toComplex();
}
}
}
}
// Store details of the interchanges in IPIV
if (KSTEP == 1) {
IPIV[K] = KP;
} else {
IPIV[K] = -KP;
IPIV[K - 1] = -KP;
}
// Decrease K and return to the start of the main loop
K -= KSTEP;
}
} else {
// Factorize A as L*D*L**H using the lower triangle of A
// K is the main loop index, increasing from 1 to N in steps of
// 1 or 2
K = 1;
while (K <= N) {
KSTEP = 1;
// Determine rows and columns to be interchanged and whether
// a 1-by-1 or 2-by-2 pivot block will be used
ABSAKK = A[K][K].real.abs();
// IMAX is the row-index of the largest off-diagonal element in
// column K, and COLMAX is its absolute value.
// Determine both COLMAX and IMAX.
if (K < N) {
IMAX = K + izamax(N - K, A(K + 1, K).asArray(), 1);
COLMAX = A[IMAX][K].cabs1();
} else {
COLMAX = ZERO;
}
if ((max(ABSAKK, COLMAX) == ZERO) || disnan(ABSAKK)) {
// Column K is zero or underflow, or contains a NaN:
// set INFO and continue
if (INFO.value == 0) INFO.value = K;
KP = K;
A[K][K] = A[K][K].real.toComplex();
} else {
// Test for interchange
if (ABSAKK >= ALPHA * COLMAX) {
// no interchange, use 1-by-1 pivot block
KP = K;
} else {
// JMAX is the column-index of the largest off-diagonal
// element in row IMAX, and ROWMAX is its absolute value.
// Determine only ROWMAX.
JMAX = K - 1 + izamax(IMAX - K, A(IMAX, K).asArray(), LDA);
ROWMAX = A[IMAX][JMAX].cabs1();
if (IMAX < N) {
JMAX = IMAX + izamax(N - IMAX, A(IMAX + 1, IMAX).asArray(), 1);
ROWMAX = max(ROWMAX, (A[JMAX][IMAX].cabs1()));
}
if (ABSAKK >= ALPHA * COLMAX * (COLMAX / ROWMAX)) {
// no interchange, use 1-by-1 pivot block
KP = K;
} else if (A[IMAX][IMAX].real.abs() >= ALPHA * ROWMAX) {
// interchange rows and columns K and IMAX, use 1-by-1
// pivot block
KP = IMAX;
} else {
// interchange rows and columns K+1 and IMAX, use 2-by-2
// pivot block
KP = IMAX;
KSTEP = 2;
}
}
KK = K + KSTEP - 1;
if (KP != KK) {
// Interchange rows and columns KK and KP in the trailing
// submatrix A(k:n,k:n)
if (KP < N) {
zswap(
N - KP, A(KP + 1, KK).asArray(), 1, A(KP + 1, KP).asArray(), 1);
}
for (J = KK + 1; J <= KP - 1; J++) {
T = A[J][KK].conjugate();
A[J][KK] = A[KP][J].conjugate();
A[KP][J] = T;
}
A[KP][KK] = A[KP][KK].conjugate();
R1 = A[KK][KK].real;
A[KK][KK] = A[KP][KP].real.toComplex();
A[KP][KP] = R1.toComplex();
if (KSTEP == 2) {
A[K][K] = A[K][K].real.toComplex();
T = A[K + 1][K];
A[K + 1][K] = A[KP][K];
A[KP][K] = T;
}
} else {
A[K][K] = A[K][K].real.toComplex();
if (KSTEP == 2) A[K + 1][K + 1] = A[K + 1][K + 1].real.toComplex();
}
// Update the trailing submatrix
if (KSTEP == 1) {
// 1-by-1 pivot block D(k): column k now holds
//
// W(k) = L(k)*D(k)
//
// where L(k) is the k-th column of L
if (K < N) {
// Perform a rank-1 update of A(k+1:n,k+1:n) as
//
// A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
R1 = ONE / A[K][K].real;
zher(UPLO, N - K, -R1, A(K + 1, K).asArray(), 1, A(K + 1, K + 1),
LDA);
// Store L(k) in column K
zdscal(N - K, R1, A(K + 1, K).asArray(), 1);
}
} else {
// 2-by-2 pivot block D(k)
if (K < N - 1) {
// Perform a rank-2 update of A(k+2:n,k+2:n) as
//
// A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
// = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
//
// where L(k) and L(k+1) are the k-th and (k+1)-th
// columns of L
D = dlapy2(A[K + 1][K].real, A[K + 1][K].imaginary);
D11 = A[K + 1][K + 1].real / D;
D22 = A[K][K].real / D;
TT = ONE / (D11 * D22 - ONE);
D21 = A[K + 1][K] / D.toComplex();
D = TT / D;
for (J = K + 2; J <= N; J++) {
WK = D.toComplex() *
(D11.toComplex() * A[J][K] - D21 * A[J][K + 1]);
WKP1 = D.toComplex() *
(D22.toComplex() * A[J][K + 1] - D21.conjugate() * A[J][K]);
for (I = J; I <= N; I++) {
A[I][J] -=
A[I][K] * WK.conjugate() + A[I][K + 1] * WKP1.conjugate();
}
A[J][K] = WK;
A[J][K + 1] = WKP1;
A[J][J] = A[J][J].real.toComplex();
}
}
}
}
// Store details of the interchanges in IPIV
if (KSTEP == 1) {
IPIV[K] = KP;
} else {
IPIV[K] = -KP;
IPIV[K + 1] = -KP;
}
// Increase K and return to the start of the main loop
K += KSTEP;
}
}
}