zhpevd function
void
zhpevd()
Implementation
void zhpevd(
final String JOBZ,
final String UPLO,
final int N,
final Array<Complex> AP_,
final Array<double> W_,
final Matrix<Complex> Z_,
final int LDZ,
final Array<Complex> WORK_,
final int LWORK,
final Array<double> RWORK_,
final int LRWORK,
final Array<int> IWORK_,
final int LIWORK,
final Box<int> INFO,
) {
final AP = AP_.having();
final Z = Z_.having(ld: LDZ);
final W = W_.having();
final WORK = WORK_.having();
final RWORK = RWORK_.having();
final IWORK = IWORK_.having();
const ZERO = 0.0, ONE = 1.0;
bool LQUERY, WANTZ;
int IMAX,
INDE,
INDRWK,
INDTAU,
INDWRK,
ISCALE,
LIWMIN = 0,
LLRWK,
LLWRK,
LRWMIN = 0,
LWMIN = 0;
double ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA = 0, SMLNUM;
final IINFO = Box(0);
// Test the input parameters.
WANTZ = lsame(JOBZ, 'V');
LQUERY = (LWORK == -1 || LRWORK == -1 || LIWORK == -1);
INFO.value = 0;
if (!(WANTZ || lsame(JOBZ, 'N'))) {
INFO.value = -1;
} else if (!(lsame(UPLO, 'L') || lsame(UPLO, 'U'))) {
INFO.value = -2;
} else if (N < 0) {
INFO.value = -3;
} else if (LDZ < 1 || (WANTZ && LDZ < N)) {
INFO.value = -7;
}
if (INFO.value == 0) {
if (N <= 1) {
LWMIN = 1;
LIWMIN = 1;
LRWMIN = 1;
} else {
if (WANTZ) {
LWMIN = 2 * N;
LRWMIN = 1 + 5 * N + 2 * pow(N, 2).toInt();
LIWMIN = 3 + 5 * N;
} else {
LWMIN = N;
LRWMIN = N;
LIWMIN = 1;
}
}
WORK[1] = LWMIN.toComplex();
RWORK[1] = LRWMIN.toDouble();
IWORK[1] = LIWMIN;
if (LWORK < LWMIN && !LQUERY) {
INFO.value = -9;
} else if (LRWORK < LRWMIN && !LQUERY) {
INFO.value = -11;
} else if (LIWORK < LIWMIN && !LQUERY) {
INFO.value = -13;
}
}
if (INFO.value != 0) {
xerbla('ZHPEVD', -INFO.value);
return;
} else if (LQUERY) {
return;
}
// Quick return if possible
if (N == 0) return;
if (N == 1) {
W[1] = AP[1].real;
if (WANTZ) Z[1][1] = Complex.one;
return;
}
// Get machine constants.
SAFMIN = dlamch('Safe minimum');
EPS = dlamch('Precision');
SMLNUM = SAFMIN / EPS;
BIGNUM = ONE / SMLNUM;
RMIN = sqrt(SMLNUM);
RMAX = sqrt(BIGNUM);
// Scale matrix to allowable range, if necessary.
ANRM = zlanhp('M', UPLO, N, AP, RWORK);
ISCALE = 0;
if (ANRM > ZERO && ANRM < RMIN) {
ISCALE = 1;
SIGMA = RMIN / ANRM;
} else if (ANRM > RMAX) {
ISCALE = 1;
SIGMA = RMAX / ANRM;
}
if (ISCALE == 1) {
zdscal((N * (N + 1)) ~/ 2, SIGMA, AP, 1);
}
// Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
INDE = 1;
INDTAU = 1;
INDRWK = INDE + N;
INDWRK = INDTAU + N;
LLWRK = LWORK - INDWRK + 1;
LLRWK = LRWORK - INDRWK + 1;
zhptrd(UPLO, N, AP, W, RWORK(INDE), WORK(INDTAU), IINFO);
// For eigenvalues only, call DSTERF. For eigenvectors, first call
// ZUPGTR to generate the orthogonal matrix, then call ZSTEDC.
if (!WANTZ) {
dsterf(N, W, RWORK(INDE), INFO);
} else {
zstedc('I', N, W, RWORK(INDE), Z, LDZ, WORK(INDWRK), LLWRK, RWORK(INDRWK),
LLRWK, IWORK, LIWORK, INFO);
zupmtr('L', UPLO, 'N', N, N, AP, WORK(INDTAU), Z, LDZ, WORK(INDWRK), IINFO);
}
// If matrix was scaled, then rescale eigenvalues appropriately.
if (ISCALE == 1) {
if (INFO.value == 0) {
IMAX = N;
} else {
IMAX = INFO.value - 1;
}
dscal(IMAX, ONE / SIGMA, W, 1);
}
WORK[1] = LWMIN.toComplex();
RWORK[1] = LRWMIN.toDouble();
IWORK[1] = LIWMIN;
}