zhpgvd function
void
zhpgvd()
Implementation
void zhpgvd(
final int ITYPE,
final String JOBZ,
final String UPLO,
final int N,
final Array<Complex> AP_,
final Array<Complex> BP_,
final Array<double> W_,
final Matrix<Complex> Z_,
final int LDZ,
final Array<Complex> WORK_,
final int LWORK,
final Array<double> RWORK_,
final int LRWORK,
final Array<int> IWORK_,
final int LIWORK,
final Box<int> INFO,
) {
final Z = Z_.having(ld: LDZ);
final AP = AP_.having();
final BP = BP_.having();
final W = W_.having();
final WORK = WORK_.having();
final RWORK = RWORK_.having();
final IWORK = IWORK_.having();
bool LQUERY, UPPER, WANTZ;
String TRANS;
int J, LIWMIN = 0, LRWMIN = 0, LWMIN = 0, NEIG;
// Test the input parameters.
WANTZ = lsame(JOBZ, 'V');
UPPER = lsame(UPLO, 'U');
LQUERY = (LWORK == -1 || LRWORK == -1 || LIWORK == -1);
INFO.value = 0;
if (ITYPE < 1 || ITYPE > 3) {
INFO.value = -1;
} else if (!(WANTZ || lsame(JOBZ, 'N'))) {
INFO.value = -2;
} else if (!(UPPER || lsame(UPLO, 'L'))) {
INFO.value = -3;
} else if (N < 0) {
INFO.value = -4;
} else if (LDZ < 1 || (WANTZ && LDZ < N)) {
INFO.value = -9;
}
if (INFO.value == 0) {
if (N <= 1) {
LWMIN = 1;
LIWMIN = 1;
LRWMIN = 1;
} else {
if (WANTZ) {
LWMIN = 2 * N;
LRWMIN = 1 + 5 * N + 2 * pow(N, 2).toInt();
LIWMIN = 3 + 5 * N;
} else {
LWMIN = N;
LRWMIN = N;
LIWMIN = 1;
}
}
WORK[1] = LWMIN.toComplex();
RWORK[1] = LRWMIN.toDouble();
IWORK[1] = LIWMIN;
if (LWORK < LWMIN && !LQUERY) {
INFO.value = -11;
} else if (LRWORK < LRWMIN && !LQUERY) {
INFO.value = -13;
} else if (LIWORK < LIWMIN && !LQUERY) {
INFO.value = -15;
}
}
if (INFO.value != 0) {
xerbla('ZHPGVD', -INFO.value);
return;
} else if (LQUERY) {
return;
}
// Quick return if possible
if (N == 0) return;
// Form a Cholesky factorization of B.
zpptrf(UPLO, N, BP, INFO);
if (INFO.value != 0) {
INFO.value = N + INFO.value;
return;
}
// Transform problem to standard eigenvalue problem and solve.
zhpgst(ITYPE, UPLO, N, AP, BP, INFO);
zhpevd(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
LIWORK, INFO);
LWMIN = max(LWMIN, WORK[1].real).toInt();
LRWMIN = max(LRWMIN, RWORK[1]).toInt();
LIWMIN = max(LIWMIN, IWORK[1]).toInt();
if (WANTZ) {
// Backtransform eigenvectors to the original problem.
NEIG = N;
if (INFO.value > 0) NEIG = INFO.value - 1;
if (ITYPE == 1 || ITYPE == 2) {
// For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
// backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
if (UPPER) {
TRANS = 'N';
} else {
TRANS = 'C';
}
for (J = 1; J <= NEIG; J++) {
ztpsv(UPLO, TRANS, 'Non-unit', N, BP, Z(1, J).asArray(), 1);
}
} else if (ITYPE == 3) {
// For B*A*x=(lambda)*x;
// backtransform eigenvectors: x = L*y or U**H *y
if (UPPER) {
TRANS = 'C';
} else {
TRANS = 'N';
}
for (J = 1; J <= NEIG; J++) {
ztpmv(UPLO, TRANS, 'Non-unit', N, BP, Z(1, J).asArray(), 1);
}
}
}
WORK[1] = LWMIN.toComplex();
RWORK[1] = LRWMIN.toDouble();
IWORK[1] = LIWMIN;
}