zhptrd function
void
zhptrd()
Implementation
void zhptrd(
final String UPLO,
final int N,
final Array<Complex> AP_,
final Array<double> D_,
final Array<double> E_,
final Array<Complex> TAU_,
final Box<int> INFO,
) {
final AP = AP_.having();
final TAU = TAU_.having();
final D = D_.having();
final E = E_.having();
const HALF = Complex(0.5, 0.0);
bool UPPER;
int I = 0, I1, I1I1, II;
final ALPHA = Box(Complex.zero), TAUI = Box(Complex.zero);
// Test the input parameters
INFO.value = 0;
UPPER = lsame(UPLO, 'U');
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
}
if (INFO.value != 0) {
xerbla('ZHPTRD', -INFO.value);
return;
}
// Quick return if possible
if (N <= 0) return;
if (UPPER) {
// Reduce the upper triangle of A.
// I1 is the index in AP of A(1,I+1).
I1 = N * (N - 1) ~/ 2 + 1;
AP[I1 + N - 1] = AP[I1 + N - 1].real.toComplex();
for (I = N - 1; I >= 1; I--) {
// Generate elementary reflector H(i) = I - tau * v * v**H
// to annihilate A(1:i-1,i+1)
ALPHA.value = AP[I1 + I - 1];
zlarfg(I, ALPHA, AP(I1), 1, TAUI);
E[I] = ALPHA.value.real;
if (TAUI.value != Complex.zero) {
// Apply H(i) from both sides to A(1:i,1:i)
AP[I1 + I - 1] = Complex.one;
// Compute y := tau * A * v storing y in TAU(1:i)
zhpmv(UPLO, I, TAUI.value, AP, AP(I1), 1, Complex.zero, TAU, 1);
// Compute w := y - 1/2 * tau * (y**H *v) * v
ALPHA.value = -HALF * TAUI.value * zdotc(I, TAU, 1, AP(I1), 1);
zaxpy(I, ALPHA.value, AP(I1), 1, TAU, 1);
// Apply the transformation as a rank-2 update:
// A := A - v * w**H - w * v**H
zhpr2(UPLO, I, -Complex.one, AP(I1), 1, TAU, 1, AP);
}
AP[I1 + I - 1] = E[I].toComplex();
D[I + 1] = AP[I1 + I].real;
TAU[I] = TAUI.value;
I1 -= I;
}
D[1] = AP[1].real;
} else {
// Reduce the lower triangle of A. II is the index in AP of
// A(i,i) and I1I1 is the index of A(i+1,i+1).
II = 1;
AP[1] = AP[1].real.toComplex();
for (I = 1; I <= N - 1; I++) {
I1I1 = II + N - I + 1;
// Generate elementary reflector H(i) = I - tau * v * v**H
// to annihilate A(i+2:n,i)
ALPHA.value = AP[II + 1];
zlarfg(N - I, ALPHA, AP(II + 2), 1, TAUI);
E[I] = ALPHA.value.real;
if (TAUI.value != Complex.zero) {
// Apply H(i) from both sides to A(i+1:n,i+1:n)
AP[II + 1] = Complex.one;
// Compute y := tau * A * v storing y in TAU(i:n-1)
zhpmv(UPLO, N - I, TAUI.value, AP(I1I1), AP(II + 1), 1, Complex.zero,
TAU(I), 1);
// Compute w := y - 1/2 * tau * (y**H *v) * v
ALPHA.value =
-HALF * TAUI.value * zdotc(N - I, TAU(I), 1, AP(II + 1), 1);
zaxpy(N - I, ALPHA.value, AP(II + 1), 1, TAU(I), 1);
// Apply the transformation as a rank-2 update:
// A := A - v * w**H - w * v**H
zhpr2(UPLO, N - I, -Complex.one, AP(II + 1), 1, TAU(I), 1, AP(I1I1));
}
AP[II + 1] = E[I].toComplex();
D[I] = AP[II].real;
TAU[I] = TAUI.value;
II = I1I1;
}
D[N] = AP[II].real;
}
}