zlahef_rk function

void zlahef_rk(
  1. String UPLO,
  2. int N,
  3. int NB,
  4. Box<int> KB,
  5. Matrix<Complex> A_,
  6. int LDA,
  7. Array<Complex> E_,
  8. Array<int> IPIV_,
  9. Matrix<Complex> W_,
  10. int LDW,
  11. Box<int> INFO,
)

Implementation

void zlahef_rk(
  final String UPLO,
  final int N,
  final int NB,
  final Box<int> KB,
  final Matrix<Complex> A_,
  final int LDA,
  final Array<Complex> E_,
  final Array<int> IPIV_,
  final Matrix<Complex> W_,
  final int LDW,
  final Box<int> INFO,
) {
  final A = A_.having(ld: LDA);
  final E = E_.having();
  final IPIV = IPIV_.having();
  final W = W_.having(ld: LDW);
  const ZERO = 0.0, ONE = 1.0;
  const EIGHT = 8.0, SEVTEN = 17.0;
  bool DONE;
  int IMAX = 0,
      ITEMP,
      II,
      J,
      JB,
      JJ,
      JMAX = 0,
      K = 0,
      KK,
      KKW,
      KP = 0,
      KSTEP,
      KW,
      P;
  double ABSAKK, ALPHA, COLMAX, DTEMP, R1, ROWMAX, T, SFMIN;
  Complex D11, D21, D22;

  INFO.value = 0;

  // Initialize ALPHA for use in choosing pivot block size.
  ALPHA = (ONE + sqrt(SEVTEN)) / EIGHT;

  // Compute machine safe minimum
  SFMIN = dlamch('S');

  if (lsame(UPLO, 'U')) {
    // Factorize the trailing columns of A using the upper triangle
    // of A and working backwards, and compute the matrix W = U12*D
    // for use in updating A11 (note that conjg(W) is actually stored)
    // Initialize the first entry of array E, where superdiagonal
    // elements of D are stored
    E[1] = Complex.zero;

    // K is the main loop index, decreasing from N in steps of 1 or 2
    K = N;
    while (true) {
      // KW is the column of W which corresponds to column K of A
      KW = NB + K - N;

      // Exit from loop
      if ((K <= N - NB + 1 && NB < N) || K < 1) break;

      KSTEP = 1;
      P = K;

      // Copy column K of A to column KW of W and update it
      if (K > 1) zcopy(K - 1, A(1, K).asArray(), 1, W(1, KW).asArray(), 1);
      W[K][KW] = A[K][K].real.toComplex();
      if (K < N) {
        zgemv('No transpose', K, N - K, -Complex.one, A(1, K + 1), LDA,
            W(K, KW + 1).asArray(), LDW, Complex.one, W(1, KW).asArray(), 1);
        W[K][KW] = W[K][KW].real.toComplex();
      }

      // Determine rows and columns to be interchanged and whether
      // a 1-by-1 or 2-by-2 pivot block will be used
      ABSAKK = W[K][KW].real.abs();

      // IMAX is the row-index of the largest off-diagonal element in
      // column K, and COLMAX is its absolute value.
      // Determine both COLMAX and IMAX.
      if (K > 1) {
        IMAX = izamax(K - 1, W(1, KW).asArray(), 1);
        COLMAX = W[IMAX][KW].cabs1();
      } else {
        COLMAX = ZERO;
      }

      if (max(ABSAKK, COLMAX) == ZERO) {
        // Column K is zero or underflow: set INFO and continue
        if (INFO.value == 0) INFO.value = K;
        KP = K;
        A[K][K] = W[K][KW].real.toComplex();
        if (K > 1) zcopy(K - 1, W(1, KW).asArray(), 1, A(1, K).asArray(), 1);

        // Set E( K ) to zero
        if (K > 1) E[K] = Complex.zero;
      } else {
        // BEGIN pivot search

        // Case(1)
        // Equivalent to testing for ABSAKK >= ALPHA*COLMAX
        // (used to handle NaN and Inf)
        if (!(ABSAKK < ALPHA * COLMAX)) {
          // no interchange, use 1-by-1 pivot block
          KP = K;
        } else {
          // Loop until pivot found
          DONE = false;
          do {
            // BEGIN pivot search loop body

            // Copy column IMAX to column KW-1 of W and update it
            if (IMAX > 1) {
              zcopy(
                  IMAX - 1, A(1, IMAX).asArray(), 1, W(1, KW - 1).asArray(), 1);
            }
            W[IMAX][KW - 1] = A[IMAX][IMAX].real.toComplex();

            zcopy(K - IMAX, A(IMAX, IMAX + 1).asArray(), LDA,
                W(IMAX + 1, KW - 1).asArray(), 1);
            zlacgv(K - IMAX, W(IMAX + 1, KW - 1).asArray(), 1);

            if (K < N) {
              zgemv(
                  'No transpose',
                  K,
                  N - K,
                  -Complex.one,
                  A(1, K + 1),
                  LDA,
                  W(IMAX, KW + 1).asArray(),
                  LDW,
                  Complex.one,
                  W(1, KW - 1).asArray(),
                  1);
              W[IMAX][KW - 1] = W[IMAX][KW - 1].real.toComplex();
            }

            // JMAX is the column-index of the largest off-diagonal
            // element in row IMAX, and ROWMAX is its absolute value.
            // Determine both ROWMAX and JMAX.
            if (IMAX != K) {
              JMAX = IMAX + izamax(K - IMAX, W(IMAX + 1, KW - 1).asArray(), 1);
              ROWMAX = W[JMAX][KW - 1].cabs1();
            } else {
              ROWMAX = ZERO;
            }

            if (IMAX > 1) {
              ITEMP = izamax(IMAX - 1, W(1, KW - 1).asArray(), 1);
              DTEMP = W[ITEMP][KW - 1].cabs1();
              if (DTEMP > ROWMAX) {
                ROWMAX = DTEMP;
                JMAX = ITEMP;
              }
            }

            // Case(2)
            // Equivalent to testing for
            // ABS( (W( IMAX,KW-1 )) ) >= ALPHA*ROWMAX
            // (used to handle NaN and Inf)
            if (!(W[IMAX][KW - 1].real.abs() < ALPHA * ROWMAX)) {
              // interchange rows and columns K and IMAX,
              // use 1-by-1 pivot block
              KP = IMAX;

              // copy column KW-1 of W to column KW of W
              zcopy(K, W(1, KW - 1).asArray(), 1, W(1, KW).asArray(), 1);

              DONE = true;

              // Case(3)
              // Equivalent to testing for ROWMAX == COLMAX,
              // (used to handle NaN and Inf)
            } else if ((P == JMAX) || (ROWMAX <= COLMAX)) {
              // interchange rows and columns K-1 and IMAX,
              // use 2-by-2 pivot block
              KP = IMAX;
              KSTEP = 2;
              DONE = true;

              // Case(4)
            } else {
              // Pivot not found: set params and repeat
              P = IMAX;
              COLMAX = ROWMAX;
              IMAX = JMAX;

              // Copy updated JMAXth (next IMAXth) column to Kth of W
              zcopy(K, W(1, KW - 1).asArray(), 1, W(1, KW).asArray(), 1);
            }

            // END pivot search loop body
          } while (!DONE);
        }

        // END pivot search

        // KK is the column of A where pivoting step stopped
        KK = K - KSTEP + 1;

        // KKW is the column of W which corresponds to column KK of A
        KKW = NB + KK - N;

        // Interchange rows and columns P and K.
        // Updated column P is already stored in column KW of W.
        if ((KSTEP == 2) && (P != K)) {
          // Copy non-updated column K to column P of submatrix A
          // at step K. No need to copy element into columns
          // K and K-1 of A for 2-by-2 pivot, since these columns
          // will be later overwritten.
          A[P][P] = A[K][K].real.toComplex();
          zcopy(
              K - 1 - P, A(P + 1, K).asArray(), 1, A(P, P + 1).asArray(), LDA);
          zlacgv(K - 1 - P, A(P, P + 1).asArray(), LDA);
          if (P > 1) zcopy(P - 1, A(1, K).asArray(), 1, A(1, P).asArray(), 1);

          // Interchange rows K and P in the last K+1 to N columns of A
          // (columns K and K-1 of A for 2-by-2 pivot will be
          // later overwritten). Interchange rows K and P
          // in last KKW to NB columns of W.
          if (K < N) {
            zswap(
                N - K, A(K, K + 1).asArray(), LDA, A(P, K + 1).asArray(), LDA);
          }
          zswap(N - KK + 1, W(K, KKW).asArray(), LDW, W(P, KKW).asArray(), LDW);
        }

        // Interchange rows and columns KP and KK.
        // Updated column KP is already stored in column KKW of W.
        if (KP != KK) {
          // Copy non-updated column KK to column KP of submatrix A
          // at step K. No need to copy element into column K
          // (or K and K-1 for 2-by-2 pivot) of A, since these columns
          // will be later overwritten.
          A[KP][KP] = A[KK][KK].real.toComplex();
          zcopy(KK - 1 - KP, A(KP + 1, KK).asArray(), 1,
              A(KP, KP + 1).asArray(), LDA);
          zlacgv(KK - 1 - KP, A(KP, KP + 1).asArray(), LDA);
          if (KP > 1) {
            zcopy(KP - 1, A(1, KK).asArray(), 1, A(1, KP).asArray(), 1);
          }

          // Interchange rows KK and KP in last K+1 to N columns of A
          // (columns K (or K and K-1 for 2-by-2 pivot) of A will be
          // later overwritten). Interchange rows KK and KP
          // in last KKW to NB columns of W.
          if (K < N) {
            zswap(N - K, A(KK, K + 1).asArray(), LDA, A(KP, K + 1).asArray(),
                LDA);
          }
          zswap(
              N - KK + 1, W(KK, KKW).asArray(), LDW, W(KP, KKW).asArray(), LDW);
        }

        if (KSTEP == 1) {
          // 1-by-1 pivot block D(k): column kw of W now holds
          //
          // W(kw) = U(k)*D(k),
          //
          // where U(k) is the k-th column of U

          // (1) Store subdiag. elements of column U(k)
          // and 1-by-1 block D(k) in column k of A.
          // (NOTE: Diagonal element U(k,k) is a UNIT element
          // and not stored)
          //    A(k,k) := D(k,k) = W(k,kw)
          //    A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)

          // (NOTE: No need to use for Hermitian matrix
          // A[K][K ] = (W( K, K)) to separately copy diagonal
          // element D(k,k) from W (potentially saves only one load))
          zcopy(K, W(1, KW).asArray(), 1, A(1, K).asArray(), 1);
          if (K > 1) {
            // (NOTE: No need to check if A(k,k) is NOT ZERO,
            //  since that was ensured earlier in pivot search:
            //  case A(k,k) = 0 falls into 2x2 pivot case(3))

            // Handle division by a small number
            T = A[K][K].real;
            if (T.abs() >= SFMIN) {
              R1 = ONE / T;
              zdscal(K - 1, R1, A(1, K).asArray(), 1);
            } else {
              for (II = 1; II <= K - 1; II++) {
                A[II][K] /= T.toComplex();
              }
            }

            // (2) Conjugate column W(kw)
            zlacgv(K - 1, W(1, KW).asArray(), 1);

            // Store the superdiagonal element of D in array E
            E[K] = Complex.zero;
          }
        } else {
          // 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
          //
          // ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
          //
          // where U(k) and U(k-1) are the k-th and (k-1)-th columns
          // of U

          // (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
          // block D(k-1:k,k-1:k) in columns k-1 and k of A.
          // (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
          // block and not stored)
          //    A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
          //    A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
          //    = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
          if (K > 2) {
            // Factor out the columns of the inverse of 2-by-2 pivot
            // block D, so that each column contains 1, to reduce the
            // number of FLOPS when we multiply panel
            // ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
            //
            // D**(-1) = ( d11 cj(d21) )**(-1) =
            //           ( d21    d22 )
            //
            // = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
            //                          ( (-d21) (     d11 ) )
            //
            // = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
            //
            // * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
            //   (     (      -1 )           ( d11/conj(d21) ) )
            //
            // = 1/(|d21|**2) * 1/(D22*D11-1) *
            //
            // * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
            //   (     (  -1 )           ( D22 ) )
            //
            // = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
            //                      (     (  -1 )           ( D22 ) )
            //
            // = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
            //   (               (  -1 )         ( D22 ) )
            //
            // Handle division by a small number. (NOTE: order of
            // operations is important)
            //
            // = ( T*(( D11 )/conj(D21)) T*((  -1 )/D21 ) )
            //   (   ((  -1 )          )   (( D22 )     ) ),
            //
            // where D11 = d22/d21,
            //       D22 = d11/conj(d21),
            //       D21 = d21,
            //       T = 1/(D22*D11-1).
            //
            // (NOTE: No need to check for division by ZERO,
            //  since that was ensured earlier in pivot search:
            //  (a) d21 != 0 in 2x2 pivot case(4),
            //      since |d21| should be larger than |d11| and |d22|;
            //  (b) (D22*D11 - 1) != 0, since from (a),
            //      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
            D21 = W[K - 1][KW];
            D11 = W[K][KW] / D21.conjugate();
            D22 = W[K - 1][KW - 1] / D21;
            T = ONE / ((D11 * D22).real - ONE);

            // Update elements in columns A(k-1) and A(k) as
            // dot products of rows of ( W(kw-1) W(kw) ) and columns
            // of D**(-1)
            for (J = 1; J <= K - 2; J++) {
              A[J][K - 1] =
                  T.toComplex() * ((D11 * W[J][KW - 1] - W[J][KW]) / D21);
              A[J][K] = T.toComplex() *
                  ((D22 * W[J][KW] - W[J][KW - 1]) / D21.conjugate());
            }
          }

          // Copy diagonal elements of D(K) to A,
          // copy superdiagonal element of D(K) to E(K) and
          // ZERO out superdiagonal entry of A
          A[K - 1][K - 1] = W[K - 1][KW - 1];
          A[K - 1][K] = Complex.zero;
          A[K][K] = W[K][KW];
          E[K] = W[K - 1][KW];
          E[K - 1] = Complex.zero;

          // (2) Conjugate columns W(kw) and W(kw-1)
          zlacgv(K - 1, W(1, KW).asArray(), 1);
          zlacgv(K - 2, W(1, KW - 1).asArray(), 1);
        }

        // End column K is nonsingular
      }

      // Store details of the interchanges in IPIV
      if (KSTEP == 1) {
        IPIV[K] = KP;
      } else {
        IPIV[K] = -P;
        IPIV[K - 1] = -KP;
      }

      // Decrease K and return to the start of the main loop
      K -= KSTEP;
    }

    // Update the upper triangle of A11 (= A(1:k,1:k)) as
    //
    // A11 := A11 - U12*D*U12**H = A11 - U12*W**H

    // computing blocks of NB columns at a time (note that conjg(W) is
    // actually stored)
    for (J = ((K - 1) ~/ NB) * NB + 1; -NB < 0 ? J >= 1 : J <= 1; J += -NB) {
      JB = min(NB, K - J + 1);

      // Update the upper triangle of the diagonal block
      for (JJ = J; JJ <= J + JB - 1; JJ++) {
        A[JJ][JJ] = A[JJ][JJ].real.toComplex();
        zgemv('No transpose', JJ - J + 1, N - K, -Complex.one, A(J, K + 1), LDA,
            W(JJ, KW + 1).asArray(), LDW, Complex.one, A(J, JJ).asArray(), 1);
        A[JJ][JJ] = A[JJ][JJ].real.toComplex();
      }

      // Update the rectangular superdiagonal block
      if (J >= 2) {
        zgemm('No transpose', 'Transpose', J - 1, JB, N - K, -Complex.one,
            A(1, K + 1), LDA, W(J, KW + 1), LDW, Complex.one, A(1, J), LDA);
      }
    }

    // Set KB to the number of columns factorized
    KB.value = N - K;
  } else {
    // Factorize the leading columns of A using the lower triangle
    // of A and working forwards, and compute the matrix W = L21*D
    // for use in updating A22 (note that conjg(W) is actually stored)

    // Initialize the unused last entry of the subdiagonal array E.
    E[N] = Complex.zero;

    // K is the main loop index, increasing from 1 in steps of 1 or 2
    K = 1;
    while (!((K >= NB && NB < N) || K > N)) {
      KSTEP = 1;
      P = K;

      // Copy column K of A to column K of W and update column K of W
      W[K][K] = A[K][K].real.toComplex();
      if (K < N) {
        zcopy(N - K, A(K + 1, K).asArray(), 1, W(K + 1, K).asArray(), 1);
      }
      if (K > 1) {
        zgemv('No transpose', N - K + 1, K - 1, -Complex.one, A(K, 1), LDA,
            W(K, 1).asArray(), LDW, Complex.one, W(K, K).asArray(), 1);
        W[K][K] = W[K][K].real.toComplex();
      }

      // Determine rows and columns to be interchanged and whether
      // a 1-by-1 or 2-by-2 pivot block will be used
      ABSAKK = W[K][K].real.abs();

      // IMAX is the row-index of the largest off-diagonal element in
      // column K, and COLMAX is its absolute value.
      // Determine both COLMAX and IMAX.
      if (K < N) {
        IMAX = K + izamax(N - K, W(K + 1, K).asArray(), 1);
        COLMAX = W[IMAX][K].cabs1();
      } else {
        COLMAX = ZERO;
      }

      if (max(ABSAKK, COLMAX) == ZERO) {
        // Column K is zero or underflow: set INFO and continue
        if (INFO.value == 0) INFO.value = K;
        KP = K;
        A[K][K] = W[K][K].real.toComplex();
        if (K < N) {
          zcopy(N - K, W(K + 1, K).asArray(), 1, A(K + 1, K).asArray(), 1);
        }

        // Set E( K ) to zero
        if (K < N) E[K] = Complex.zero;
      } else {
        // BEGIN pivot search

        // Case(1)
        // Equivalent to testing for ABSAKK >= ALPHA*COLMAX
        // (used to handle NaN and Inf)
        if (!(ABSAKK < ALPHA * COLMAX)) {
          // no interchange, use 1-by-1 pivot block
          KP = K;
        } else {
          DONE = false;

          // Loop until pivot found
          do {
            // BEGIN pivot search loop body

            // Copy column IMAX to column k+1 of W and update it
            zcopy(
                IMAX - K, A(IMAX, K).asArray(), LDA, W(K, K + 1).asArray(), 1);
            zlacgv(IMAX - K, W(K, K + 1).asArray(), 1);
            W[IMAX][K + 1] = A[IMAX][IMAX].real.toComplex();

            if (IMAX < N) {
              zcopy(N - IMAX, A(IMAX + 1, IMAX).asArray(), 1,
                  W(IMAX + 1, K + 1).asArray(), 1);
            }

            if (K > 1) {
              zgemv(
                  'No transpose',
                  N - K + 1,
                  K - 1,
                  -Complex.one,
                  A(K, 1),
                  LDA,
                  W(IMAX, 1).asArray(),
                  LDW,
                  Complex.one,
                  W(K, K + 1).asArray(),
                  1);
              W[IMAX][K + 1] = W[IMAX][K + 1].real.toComplex();
            }

            // JMAX is the column-index of the largest off-diagonal
            // element in row IMAX, and ROWMAX is its absolute value.
            // Determine both ROWMAX and JMAX.
            if (IMAX != K) {
              JMAX = K - 1 + izamax(IMAX - K, W(K, K + 1).asArray(), 1);
              ROWMAX = W[JMAX][K + 1].cabs1();
            } else {
              ROWMAX = ZERO;
            }

            if (IMAX < N) {
              ITEMP = IMAX + izamax(N - IMAX, W(IMAX + 1, K + 1).asArray(), 1);
              DTEMP = W[ITEMP][K + 1].cabs1();
              if (DTEMP > ROWMAX) {
                ROWMAX = DTEMP;
                JMAX = ITEMP;
              }
            }

            // Case(2)
            // Equivalent to testing for
            // ABS( (W( IMAX,K+1 )) ) >= ALPHA*ROWMAX
            // (used to handle NaN and Inf)
            if (!(W[IMAX][K + 1].real.abs() < ALPHA * ROWMAX)) {
              // interchange rows and columns K and IMAX,
              // use 1-by-1 pivot block
              KP = IMAX;

              // copy column K+1 of W to column K of W
              zcopy(N - K + 1, W(K, K + 1).asArray(), 1, W(K, K).asArray(), 1);

              DONE = true;

              // Case(3)
              // Equivalent to testing for ROWMAX == COLMAX,
              // (used to handle NaN and Inf)
            } else if ((P == JMAX) || (ROWMAX <= COLMAX)) {
              // interchange rows and columns K+1 and IMAX,
              // use 2-by-2 pivot block
              KP = IMAX;
              KSTEP = 2;
              DONE = true;

              // Case(4)
            } else {
              // Pivot not found: set params and repeat
              P = IMAX;
              COLMAX = ROWMAX;
              IMAX = JMAX;

              // Copy updated JMAXth (next IMAXth) column to Kth of W
              zcopy(N - K + 1, W(K, K + 1).asArray(), 1, W(K, K).asArray(), 1);
            }

            // End pivot search loop body
          } while (!DONE);
        }

        // END pivot search

        // KK is the column of A where pivoting step stopped
        KK = K + KSTEP - 1;

        // Interchange rows and columns P and K (only for 2-by-2 pivot).
        // Updated column P is already stored in column K of W.
        if ((KSTEP == 2) && (P != K)) {
          // Copy non-updated column KK-1 to column P of submatrix A
          // at step K. No need to copy element into columns
          // K and K+1 of A for 2-by-2 pivot, since these columns
          // will be later overwritten.
          A[P][P] = A[K][K].real.toComplex();
          zcopy(
              P - K - 1, A(K + 1, K).asArray(), 1, A(P, K + 1).asArray(), LDA);
          zlacgv(P - K - 1, A(P, K + 1).asArray(), LDA);
          if (P < N) {
            zcopy(N - P, A(P + 1, K).asArray(), 1, A(P + 1, P).asArray(), 1);
          }

          // Interchange rows K and P in first K-1 columns of A
          // (columns K and K+1 of A for 2-by-2 pivot will be
          // later overwritten). Interchange rows K and P
          // in first KK columns of W.
          if (K > 1) {
            zswap(K - 1, A(K, 1).asArray(), LDA, A(P, 1).asArray(), LDA);
          }
          zswap(KK, W(K, 1).asArray(), LDW, W(P, 1).asArray(), LDW);
        }

        // Interchange rows and columns KP and KK.
        // Updated column KP is already stored in column KK of W.
        if (KP != KK) {
          // Copy non-updated column KK to column KP of submatrix A
          // at step K. No need to copy element into column K
          // (or K and K+1 for 2-by-2 pivot) of A, since these columns
          // will be later overwritten.
          A[KP][KP] = A[KK][KK].real.toComplex();
          zcopy(KP - KK - 1, A(KK + 1, KK).asArray(), 1,
              A(KP, KK + 1).asArray(), LDA);
          zlacgv(KP - KK - 1, A(KP, KK + 1).asArray(), LDA);
          if (KP < N) {
            zcopy(
                N - KP, A(KP + 1, KK).asArray(), 1, A(KP + 1, KP).asArray(), 1);
          }

          // Interchange rows KK and KP in first K-1 columns of A
          // (column K (or K and K+1 for 2-by-2 pivot) of A will be
          // later overwritten). Interchange rows KK and KP
          // in first KK columns of W.
          if (K > 1) {
            zswap(K - 1, A(KK, 1).asArray(), LDA, A(KP, 1).asArray(), LDA);
          }
          zswap(KK, W(KK, 1).asArray(), LDW, W(KP, 1).asArray(), LDW);
        }

        if (KSTEP == 1) {
          // 1-by-1 pivot block D(k): column k of W now holds
          //
          // W(k) = L(k)*D(k),
          //
          // where L(k) is the k-th column of L

          // (1) Store subdiag. elements of column L(k)
          // and 1-by-1 block D(k) in column k of A.
          // (NOTE: Diagonal element L(k,k) is a UNIT element
          // and not stored)
          //    A(k,k) := D(k,k) = W(k,k)
          //    A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)

          // (NOTE: No need to use for Hermitian matrix
          // A[K][K ] = (W( K, K)) to separately copy diagonal
          // element D(k,k) from W (potentially saves only one load))
          zcopy(N - K + 1, W(K, K).asArray(), 1, A(K, K).asArray(), 1);
          if (K < N) {
            // (NOTE: No need to check if A(k,k) is NOT ZERO,
            //  since that was ensured earlier in pivot search:
            //  case A(k,k) = 0 falls into 2x2 pivot case(3))

            // Handle division by a small number
            T = A[K][K].real;
            if (T.abs() >= SFMIN) {
              R1 = ONE / T;
              zdscal(N - K, R1, A(K + 1, K).asArray(), 1);
            } else {
              for (II = K + 1; II <= N; II++) {
                A[II][K] /= T.toComplex();
              }
            }

            // (2) Conjugate column W(k)
            zlacgv(N - K, W(K + 1, K).asArray(), 1);

            // Store the subdiagonal element of D in array E
            E[K] = Complex.zero;
          }
        } else {
          // 2-by-2 pivot block D(k): columns k and k+1 of W now hold
          //
          // ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
          //
          // where L(k) and L(k+1) are the k-th and (k+1)-th columns
          // of L

          // (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
          // block D(k:k+1,k:k+1) in columns k and k+1 of A.
          // NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
          // block and not stored.
          //    A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
          //    A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
          //    = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )

          if (K < N - 1) {
            // Factor out the columns of the inverse of 2-by-2 pivot
            // block D, so that each column contains 1, to reduce the
            // number of FLOPS when we multiply panel
            // ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
            //
            // D**(-1) = ( d11 cj(d21) )**(-1) =
            //           ( d21    d22 )
            //
            // = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
            //                          ( (-d21) (     d11 ) )
            //
            // = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
            //
            // * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
            //   (     (      -1 )           ( d11/conj(d21) ) )
            //
            // = 1/(|d21|**2) * 1/(D22*D11-1) *
            //
            // * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
            //   (     (  -1 )           ( D22 ) )
            //
            // = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
            //                      (     (  -1 )           ( D22 ) )
            //
            // = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
            //   (               (  -1 )         ( D22 ) )
            //
            // Handle division by a small number. (NOTE: order of
            // operations is important)
            //
            // = ( T*(( D11 )/conj(D21)) T*((  -1 )/D21 ) )
            //   (   ((  -1 )          )   (( D22 )     ) ),
            //
            // where D11 = d22/d21,
            //       D22 = d11/conj(d21),
            //       D21 = d21,
            //       T = 1/(D22*D11-1).

            // (NOTE: No need to check for division by ZERO,
            //  since that was ensured earlier in pivot search:
            //  (a) d21 != 0 in 2x2 pivot case(4),
            //      since |d21| should be larger than |d11| and |d22|;
            //  (b) (D22*D11 - 1) != 0, since from (a),
            //      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
            D21 = W[K + 1][K];
            D11 = W[K + 1][K + 1] / D21;
            D22 = W[K][K] / D21.conjugate();
            T = ONE / ((D11 * D22).real - ONE);

            // Update elements in columns A(k) and A(k+1) as
            // dot products of rows of ( W(k) W(k+1) ) and columns
            // of D**(-1)
            for (J = K + 2; J <= N; J++) {
              A[J][K] = T.toComplex() *
                  ((D11 * W[J][K] - W[J][K + 1]) / D21.conjugate());
              A[J][K + 1] =
                  T.toComplex() * ((D22 * W[J][K + 1] - W[J][K]) / D21);
            }
          }

          // Copy diagonal elements of D(K) to A,
          // copy subdiagonal element of D(K) to E(K) and
          // ZERO out subdiagonal entry of A
          A[K][K] = W[K][K];
          A[K + 1][K] = Complex.zero;
          A[K + 1][K + 1] = W[K + 1][K + 1];
          E[K] = W[K + 1][K];
          E[K + 1] = Complex.zero;

          // (2) Conjugate columns W(k) and W(k+1)
          zlacgv(N - K, W(K + 1, K).asArray(), 1);
          zlacgv(N - K - 1, W(K + 2, K + 1).asArray(), 1);
        }

        // End column K is nonsingular
      }

      // Store details of the interchanges in IPIV
      if (KSTEP == 1) {
        IPIV[K] = KP;
      } else {
        IPIV[K] = -P;
        IPIV[K + 1] = -KP;
      }

      // Increase K and return to the start of the main loop
      K += KSTEP;
    }

    // Update the lower triangle of A22 (= A(k:n,k:n)) as
    //
    // A22 := A22 - L21*D*L21**H = A22 - L21*W**H

    // computing blocks of NB columns at a time (note that conjg(W) is
    // actually stored)
    for (J = K; NB < 0 ? J >= N : J <= N; J += NB) {
      JB = min(NB, N - J + 1);

      // Update the lower triangle of the diagonal block
      for (JJ = J; JJ <= J + JB - 1; JJ++) {
        A[JJ][JJ] = A[JJ][JJ].real.toComplex();
        zgemv('No transpose', J + JB - JJ, K - 1, -Complex.one, A(JJ, 1), LDA,
            W(JJ, 1).asArray(), LDW, Complex.one, A(JJ, JJ).asArray(), 1);
        A[JJ][JJ] = A[JJ][JJ].real.toComplex();
      }

      // Update the rectangular subdiagonal block
      if (J + JB <= N) {
        zgemm(
            'No transpose',
            'Transpose',
            N - J - JB + 1,
            JB,
            K - 1,
            -Complex.one,
            A(J + JB, 1),
            LDA,
            W(J, 1),
            LDW,
            Complex.one,
            A(J + JB, J),
            LDA);
      }
    }

    // Set KB to the number of columns factorized
    KB.value = K - 1;
  }
}