zlaqsp function
void
zlaqsp()
Implementation
void zlaqsp(
final String UPLO,
final int N,
final Array<Complex> AP_,
final Array<double> S_,
final double SCOND,
final double AMAX,
final Box<String> EQUED,
) {
final AP = AP_.having();
final S = S_.having();
const ONE = 1.0, THRESH = 0.1;
int I, J, JC;
double CJ, LARGE, SMALL;
// Quick return if possible
if (N <= 0) {
EQUED.value = 'N';
return;
}
// Initialize LARGE and SMALL.
SMALL = dlamch('Safe minimum') / dlamch('Precision');
LARGE = ONE / SMALL;
if (SCOND >= THRESH && AMAX >= SMALL && AMAX <= LARGE) {
// No equilibration
EQUED.value = 'N';
} else {
// Replace A by diag(S) * A * diag(S).
if (lsame(UPLO, 'U')) {
// Upper triangle of A is stored.
JC = 1;
for (J = 1; J <= N; J++) {
CJ = S[J];
for (I = 1; I <= J; I++) {
AP[JC + I - 1] = (CJ * S[I]).toComplex() * AP[JC + I - 1];
}
JC += J;
}
} else {
// Lower triangle of A is stored.
JC = 1;
for (J = 1; J <= N; J++) {
CJ = S[J];
for (I = J; I <= N; I++) {
AP[JC + I - J] = (CJ * S[I]).toComplex() * AP[JC + I - J];
}
JC += N - J + 1;
}
}
EQUED.value = 'Y';
}
}