zpbequ function
void
zpbequ()
Implementation
void zpbequ(
final String UPLO,
final int N,
final int KD,
final Matrix<Complex> AB_,
final int LDAB,
final Array<double> S_,
final Box<double> SCOND,
final Box<double> AMAX,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
final S = S_.having();
const ZERO = 0.0, ONE = 1.0;
bool UPPER;
int I, J;
double SMIN;
// Test the input parameters.
INFO.value = 0;
UPPER = lsame(UPLO, 'U');
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (KD < 0) {
INFO.value = -3;
} else if (LDAB < KD + 1) {
INFO.value = -5;
}
if (INFO.value != 0) {
xerbla('ZPBEQU', -INFO.value);
return;
}
// Quick return if possible
if (N == 0) {
SCOND.value = ONE;
AMAX.value = ZERO;
return;
}
if (UPPER) {
J = KD + 1;
} else {
J = 1;
}
// Initialize SMIN and AMAX.
S[1] = AB[J][1].real;
SMIN = S[1];
AMAX.value = S[1];
// Find the minimum and maximum diagonal elements.
for (I = 2; I <= N; I++) {
S[I] = AB[J][I].real;
SMIN = min(SMIN, S[I]);
AMAX.value = max(AMAX.value, S[I]);
}
if (SMIN <= ZERO) {
// Find the first non-positive diagonal element and return.
for (I = 1; I <= N; I++) {
if (S[I] <= ZERO) {
INFO.value = I;
return;
}
}
} else {
// Set the scale factors to the reciprocals
// of the diagonal elements.
for (I = 1; I <= N; I++) {
S[I] = ONE / sqrt(S[I]);
}
// Compute SCOND = min(S(I)) / max(S(I))
SCOND.value = sqrt(SMIN) / sqrt(AMAX.value);
}
}