zpoequb function
void
zpoequb()
Implementation
void zpoequb(
final int N,
final Matrix<Complex> A_,
final int LDA,
final Array<double> S_,
final Box<double> SCOND,
final Box<double> AMAX,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final S = S_.having();
const ZERO = 0.0, ONE = 1.0;
int I;
double SMIN, BASE, TMP;
// Test the input parameters.
// Positive definite only performs 1 pass of equilibration.
INFO.value = 0;
if (N < 0) {
INFO.value = -1;
} else if (LDA < max(1, N)) {
INFO.value = -3;
}
if (INFO.value != 0) {
xerbla('ZPOEQUB', -INFO.value);
return;
}
// Quick return if possible.
if (N == 0) {
SCOND.value = ONE;
AMAX.value = ZERO;
return;
}
BASE = dlamch('B');
TMP = -0.5 / log(BASE);
// Find the minimum and maximum diagonal elements.
S[1] = A[1][1].real;
SMIN = S[1];
AMAX.value = S[1];
for (I = 2; I <= N; I++) {
S[I] = A[I][I].real;
SMIN = min(SMIN, S[I]);
AMAX.value = max(AMAX.value, S[I]);
}
if (SMIN <= ZERO) {
// Find the first non-positive diagonal element and return.
for (I = 1; I <= N; I++) {
if (S[I] <= ZERO) {
INFO.value = I;
return;
}
}
} else {
// Set the scale factors to the reciprocals
// of the diagonal elements.
for (I = 1; I <= N; I++) {
S[I] = pow(BASE, (TMP * log(S[I])).toInt()).toDouble();
}
// Compute SCOND = min(S(I)) / max(S(I)).
SCOND.value = sqrt(SMIN) / sqrt(AMAX.value);
}
}