zspr function
Implementation
void zspr(
final String UPLO,
final int N,
final Complex ALPHA,
final Array<Complex> X_,
final int INCX,
final Array<Complex> AP_,
) {
final X = X_.having();
final AP = AP_.having();
int I, INFO, IX, J, JX, K, KK, KX = 0;
Complex TEMP;
// Test the input parameters.
INFO = 0;
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO = 1;
} else if (N < 0) {
INFO = 2;
} else if (INCX == 0) {
INFO = 5;
}
if (INFO != 0) {
xerbla('ZSPR', INFO);
return;
}
// Quick return if possible.
if ((N == 0) || (ALPHA == Complex.zero)) return;
// Set the start point in X if the increment is not unity.
if (INCX <= 0) {
KX = 1 - (N - 1) * INCX;
} else if (INCX != 1) {
KX = 1;
}
// Start the operations. In this version the elements of the array AP
// are accessed sequentially with one pass through AP.
KK = 1;
if (lsame(UPLO, 'U')) {
// Form A when upper triangle is stored in AP.
if (INCX == 1) {
for (J = 1; J <= N; J++) {
if (X[J] != Complex.zero) {
TEMP = ALPHA * X[J];
K = KK;
for (I = 1; I <= J - 1; I++) {
AP[K] += X[I] * TEMP;
K++;
}
AP[KK + J - 1] += X[J] * TEMP;
} else {
AP[KK + J - 1] = AP[KK + J - 1];
}
KK += J;
}
} else {
JX = KX;
for (J = 1; J <= N; J++) {
if (X[JX] != Complex.zero) {
TEMP = ALPHA * X[JX];
IX = KX;
for (K = KK; K <= KK + J - 2; K++) {
AP[K] += X[IX] * TEMP;
IX += INCX;
}
AP[KK + J - 1] += X[JX] * TEMP;
} else {
AP[KK + J - 1] = AP[KK + J - 1];
}
JX += INCX;
KK += J;
}
}
} else {
// Form A when lower triangle is stored in AP.
if (INCX == 1) {
for (J = 1; J <= N; J++) {
if (X[J] != Complex.zero) {
TEMP = ALPHA * X[J];
AP[KK] += TEMP * X[J];
K = KK + 1;
for (I = J + 1; I <= N; I++) {
AP[K] += X[I] * TEMP;
K++;
}
} else {
AP[KK] = AP[KK];
}
KK += N - J + 1;
}
} else {
JX = KX;
for (J = 1; J <= N; J++) {
if (X[JX] != Complex.zero) {
TEMP = ALPHA * X[JX];
AP[KK] += TEMP * X[JX];
IX = JX;
for (K = KK + 1; K <= KK + N - J; K++) {
IX += INCX;
AP[K] += X[IX] * TEMP;
}
} else {
AP[KK] = AP[KK];
}
JX += INCX;
KK += N - J + 1;
}
}
}
}