zsycon_3 function
void
zsycon_3()
Implementation
void zsycon_3(
final String UPLO,
final int N,
final Matrix<Complex> A_,
final int LDA,
final Array<Complex> E_,
final Array<int> IPIV_,
final double ANORM,
final Box<double> RCOND,
final Array<Complex> WORK_,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final E = E_.having();
final IPIV = IPIV_.having();
final WORK = WORK_.having();
const ONE = 1.0, ZERO = 0.0;
bool UPPER;
int I;
final ISAVE = Array<int>(3);
final KASE = Box(0);
final AINVNM = Box(0.0);
// Test the input parameters.
INFO.value = 0;
UPPER = lsame(UPLO, 'U');
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (LDA < max(1, N)) {
INFO.value = -4;
} else if (ANORM < ZERO) {
INFO.value = -7;
}
if (INFO.value != 0) {
xerbla('ZSYCON_3', -INFO.value);
return;
}
// Quick return if possible
RCOND.value = ZERO;
if (N == 0) {
RCOND.value = ONE;
return;
} else if (ANORM <= ZERO) {
return;
}
// Check that the diagonal matrix D is nonsingular.
if (UPPER) {
// Upper triangular storage: examine D from bottom to top
for (I = N; I >= 1; I--) {
if (IPIV[I] > 0 && A[I][I] == Complex.zero) return;
}
} else {
// Lower triangular storage: examine D from top to bottom.
for (I = 1; I <= N; I++) {
if (IPIV[I] > 0 && A[I][I] == Complex.zero) return;
}
}
// Estimate the 1-norm of the inverse.
KASE.value = 0;
while (true) {
zlacn2(N, WORK(N + 1), WORK, AINVNM, KASE, ISAVE);
if (KASE.value == 0) break;
// Multiply by inv(L*D*L**T) or inv(U*D*U**T).
zsytrs_3(UPLO, N, 1, A, LDA, E, IPIV, WORK.asMatrix(), N, INFO);
}
// Compute the estimate of the reciprocal condition number.
if (AINVNM.value != ZERO) RCOND.value = (ONE / AINVNM.value) / ANORM;
}