zsyr function
void
zsyr()
Implementation
void zsyr(
final String UPLO,
final int N,
final Complex ALPHA,
final Array<Complex> X_,
final int INCX,
final Matrix<Complex> A_,
final int LDA,
) {
final X = X_.having();
final A = A_.having(ld: LDA);
int I, INFO, IX, J, JX, KX = 0;
Complex TEMP;
// Test the input parameters.
INFO = 0;
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO = 1;
} else if (N < 0) {
INFO = 2;
} else if (INCX == 0) {
INFO = 5;
} else if (LDA < max(1, N)) {
INFO = 7;
}
if (INFO != 0) {
xerbla('ZSYR', INFO);
return;
}
// Quick return if possible.
if ((N == 0) || (ALPHA == Complex.zero)) return;
// Set the start point in X if the increment is not unity.
if (INCX <= 0) {
KX = 1 - (N - 1) * INCX;
} else if (INCX != 1) {
KX = 1;
}
// Start the operations. In this version the elements of A are
// accessed sequentially with one pass through the triangular part
// of A.
if (lsame(UPLO, 'U')) {
// Form A when A is stored in upper triangle.
if (INCX == 1) {
for (J = 1; J <= N; J++) {
if (X[J] != Complex.zero) {
TEMP = ALPHA * X[J];
for (I = 1; I <= J; I++) {
A[I][J] += X[I] * TEMP;
}
}
}
} else {
JX = KX;
for (J = 1; J <= N; J++) {
if (X[JX] != Complex.zero) {
TEMP = ALPHA * X[JX];
IX = KX;
for (I = 1; I <= J; I++) {
A[I][J] += X[IX] * TEMP;
IX += INCX;
}
}
JX += INCX;
}
}
} else {
// Form A when A is stored in lower triangle.
if (INCX == 1) {
for (J = 1; J <= N; J++) {
if (X[J] != Complex.zero) {
TEMP = ALPHA * X[J];
for (I = J; I <= N; I++) {
A[I][J] += X[I] * TEMP;
}
}
}
} else {
JX = KX;
for (J = 1; J <= N; J++) {
if (X[JX] != Complex.zero) {
TEMP = ALPHA * X[JX];
IX = JX;
for (I = J; I <= N; I++) {
A[I][J] += X[IX] * TEMP;
IX += INCX;
}
}
JX += INCX;
}
}
}
}