ztbtrs function
void
ztbtrs()
Implementation
void ztbtrs(
final String UPLO,
final String TRANS,
final String DIAG,
final int N,
final int KD,
final int NRHS,
final Matrix<Complex> AB_,
final int LDAB,
final Matrix<Complex> B_,
final int LDB,
final Box<int> INFO,
) {
final AB = AB_.having(ld: LDAB);
final B = B_.having(ld: LDB);
bool NOUNIT, UPPER;
int J;
// Test the input parameters.
INFO.value = 0;
NOUNIT = lsame(DIAG, 'N');
UPPER = lsame(UPLO, 'U');
if (!UPPER && !lsame(UPLO, 'L')) {
INFO.value = -1;
} else if (!lsame(TRANS, 'N') && !lsame(TRANS, 'T') && !lsame(TRANS, 'C')) {
INFO.value = -2;
} else if (!NOUNIT && !lsame(DIAG, 'U')) {
INFO.value = -3;
} else if (N < 0) {
INFO.value = -4;
} else if (KD < 0) {
INFO.value = -5;
} else if (NRHS < 0) {
INFO.value = -6;
} else if (LDAB < KD + 1) {
INFO.value = -8;
} else if (LDB < max(1, N)) {
INFO.value = -10;
}
if (INFO.value != 0) {
xerbla('ZTBTRS', -INFO.value);
return;
}
// Quick return if possible
if (N == 0) return;
// Check for singularity.
if (NOUNIT) {
if (UPPER) {
for (INFO.value = 1; INFO.value <= N; INFO.value++) {
if (AB[KD + 1][INFO.value] == Complex.zero) return;
}
} else {
for (INFO.value = 1; INFO.value <= N; INFO.value++) {
if (AB[1][INFO.value] == Complex.zero) return;
}
}
}
INFO.value = 0;
// Solve A * X = B, A**T * X = B, or A**H * X = B.
for (J = 1; J <= NRHS; J++) {
ztbsv(UPLO, TRANS, DIAG, N, KD, AB, LDAB, B(1, J).asArray(), 1);
}
}