ztpqrt2 function
void
ztpqrt2()
Implementation
void ztpqrt2(
final int M,
final int N,
final int L,
final Matrix<Complex> A_,
final int LDA,
final Matrix<Complex> B_,
final int LDB,
final Matrix<Complex> T_,
final int LDT,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final B = B_.having(ld: LDB);
final T = T_.having(ld: LDT);
int I, J, P, MP, NP;
Complex ALPHA;
// Test the input arguments
INFO.value = 0;
if (M < 0) {
INFO.value = -1;
} else if (N < 0) {
INFO.value = -2;
} else if (L < 0 || L > min(M, N)) {
INFO.value = -3;
} else if (LDA < max(1, N)) {
INFO.value = -5;
} else if (LDB < max(1, M)) {
INFO.value = -7;
} else if (LDT < max(1, N)) {
INFO.value = -9;
}
if (INFO.value != 0) {
xerbla('ZTPQRT2', -INFO.value);
return;
}
// Quick return if possible
if (N == 0 || M == 0) return;
for (I = 1; I <= N; I++) {
// Generate elementary reflector H(I) to annihilate B(:,I)
P = M - L + min(L, I);
zlarfg(P + 1, A(I, I), B(1, I).asArray(), 1, T(I, 1));
if (I < N) {
// W(1:N-I) := C(I:M,I+1:N)**H * C(I:M,I) [use W = T(:,N)]
for (J = 1; J <= N - I; J++) {
T[J][N] = A[I][I + J].conjugate();
}
zgemv('C', P, N - I, Complex.one, B(1, I + 1), LDB, B(1, I).asArray(), 1,
Complex.one, T(1, N).asArray(), 1);
// C(I:M,I+1:N) = C(I:m,I+1:N) + alpha*C(I:M,I)*W(1:N-1)**H
ALPHA = -T[I][1].conjugate();
for (J = 1; J <= N - I; J++) {
A[I][I + J] += ALPHA * T[J][N].conjugate();
}
zgerc(P, N - I, ALPHA, B(1, I).asArray(), 1, T(1, N).asArray(), 1,
B(1, I + 1), LDB);
}
}
for (I = 2; I <= N; I++) {
// T(1:I-1,I) := C(I:M,1:I-1)**H * (alpha * C(I:M,I))
ALPHA = -T[I][1];
for (J = 1; J <= I - 1; J++) {
T[J][I] = Complex.zero;
}
P = min(I - 1, L);
MP = min(M - L + 1, M);
NP = min(P + 1, N);
// Triangular part of B2
for (J = 1; J <= P; J++) {
T[J][I] = ALPHA * B[M - L + J][I];
}
ztrmv('U', 'C', 'N', P, B(MP, 1), LDB, T(1, I).asArray(), 1);
// Rectangular part of B2
zgemv('C', L, I - 1 - P, ALPHA, B(MP, NP), LDB, B(MP, I).asArray(), 1,
Complex.zero, T(NP, I).asArray(), 1);
// B1
zgemv('C', M - L, I - 1, ALPHA, B, LDB, B(1, I).asArray(), 1, Complex.one,
T(1, I).asArray(), 1);
// T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
ztrmv('U', 'N', 'N', I - 1, T, LDT, T(1, I).asArray(), 1);
// T(I,I) = tau(I)
T[I][I] = T[I][1];
T[I][1] = Complex.zero;
}
}