ztrsyl function
void
ztrsyl()
Implementation
void ztrsyl(
final String TRANA,
final String TRANB,
final int ISGN,
final int M,
final int N,
final Matrix<Complex> A_,
final int LDA,
final Matrix<Complex> B_,
final int LDB,
final Matrix<Complex> C_,
final int LDC,
final Box<double> SCALE,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA);
final B = B_.having(ld: LDB);
final C = C_.having(ld: LDC);
const ONE = 1.0;
bool NOTRNA, NOTRNB;
int J, K, L;
double BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN = 0, SMLNUM;
Complex A11, SUML, SUMR, VEC, X11;
final DUM = Array<double>(1);
// Decode and Test input parameters
NOTRNA = lsame(TRANA, 'N');
NOTRNB = lsame(TRANB, 'N');
INFO.value = 0;
if (!NOTRNA && !lsame(TRANA, 'C')) {
INFO.value = -1;
} else if (!NOTRNB && !lsame(TRANB, 'C')) {
INFO.value = -2;
} else if (ISGN != 1 && ISGN != -1) {
INFO.value = -3;
} else if (M < 0) {
INFO.value = -4;
} else if (N < 0) {
INFO.value = -5;
} else if (LDA < max(1, M)) {
INFO.value = -7;
} else if (LDB < max(1, N)) {
INFO.value = -9;
} else if (LDC < max(1, M)) {
INFO.value = -11;
}
if (INFO.value != 0) {
xerbla('ZTRSYL', -INFO.value);
return;
}
// Quick return if possible
SCALE.value = ONE;
if (M == 0 || N == 0) return;
// Set constants to control overflow
EPS = dlamch('P');
SMLNUM = dlamch('S');
BIGNUM = ONE / SMLNUM;
SMLNUM *= (M * N) / EPS;
BIGNUM = ONE / SMLNUM;
SMIN = max(
SMLNUM,
max(EPS * zlange('M', M, M, A, LDA, DUM),
EPS * zlange('M', N, N, B, LDB, DUM)));
SGN = ISGN.toDouble();
if (NOTRNA && NOTRNB) {
// Solve A*X + ISGN*X*B = scale*C.
//
// The (K,L)th block of X is determined starting from
// bottom-left corner column by column by
//
// A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
//
// Where
// M L-1
// R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)].
// I=K+1 J=1
for (L = 1; L <= N; L++) {
for (K = M; K >= 1; K--) {
SUML = zdotu(M - K, A(K, min(K + 1, M)).asArray(), LDA,
C(min(K + 1, M), L).asArray(), 1);
SUMR = zdotu(L - 1, C(K, 1).asArray(), LDC, B(1, L).asArray(), 1);
VEC = C[K][L] - (SUML + SGN.toComplex() * SUMR);
SCALOC = ONE;
A11 = A[K][K] + SGN.toComplex() * B[L][L];
DA11 = A11.real.abs() + A11.imaginary.abs();
if (DA11 <= SMIN) {
A11 = SMIN.toComplex();
DA11 = SMIN;
INFO.value = 1;
}
DB = VEC.real.abs() + VEC.imaginary.abs();
if (DA11 < ONE && DB > ONE) {
if (DB > BIGNUM * DA11) SCALOC = ONE / DB;
}
X11 = zladiv(VEC * Complex(SCALOC), A11);
if (SCALOC != ONE) {
for (J = 1; J <= N; J++) {
zdscal(M, SCALOC, C(1, J).asArray(), 1);
}
SCALE.value *= SCALOC;
}
C[K][L] = X11;
}
}
} else if (!NOTRNA && NOTRNB) {
// Solve A**H *X + ISGN*X*B = scale*C.
// The (K,L)th block of X is determined starting from
// upper-left corner column by column by
// A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
// Where
// K-1 L-1
// R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]
// I=1 J=1
for (L = 1; L <= N; L++) {
for (K = 1; K <= M; K++) {
SUML = zdotc(K - 1, A(1, K).asArray(), 1, C(1, L).asArray(), 1);
SUMR = zdotu(L - 1, C(K, 1).asArray(), LDC, B(1, L).asArray(), 1);
VEC = C[K][L] - (SUML + SGN.toComplex() * SUMR);
SCALOC = ONE;
A11 = A[K][K].conjugate() + SGN.toComplex() * B[L][L];
DA11 = A11.real.abs() + A11.imaginary.abs();
if (DA11 <= SMIN) {
A11 = SMIN.toComplex();
DA11 = SMIN;
INFO.value = 1;
}
DB = VEC.real.abs() + VEC.imaginary.abs();
if (DA11 < ONE && DB > ONE) {
if (DB > BIGNUM * DA11) SCALOC = ONE / DB;
}
X11 = zladiv(VEC * Complex(SCALOC), A11);
if (SCALOC != ONE) {
for (J = 1; J <= N; J++) {
zdscal(M, SCALOC, C(1, J).asArray(), 1);
}
SCALE.value *= SCALOC;
}
C[K][L] = X11;
}
}
} else if (!NOTRNA && !NOTRNB) {
// Solve A**H*X + ISGN*X*B**H = C.
//
// The (K,L)th block of X is determined starting from
// upper-right corner column by column by
//
// A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L)
//
// Where
// K-1
// R(K,L) = SUM [A**H(I,K)*X(I,L)] +
// I=1
// N
// ISGN*SUM [X(K,J)*B**H(L,J)].
// J=L+1
for (L = N; L >= 1; L--) {
for (K = 1; K <= M; K++) {
SUML = zdotc(K - 1, A(1, K).asArray(), 1, C(1, L).asArray(), 1);
SUMR = zdotc(N - L, C(K, min(L + 1, N)).asArray(), LDC,
B(L, min(L + 1, N)).asArray(), LDB);
VEC = C[K][L] - (SUML + SGN.toComplex() * SUMR.conjugate());
SCALOC = ONE;
A11 = (A[K][K] + SGN.toComplex() * B[L][L]).conjugate();
DA11 = A11.real.abs() + A11.imaginary.abs();
if (DA11 <= SMIN) {
A11 = SMIN.toComplex();
DA11 = SMIN;
INFO.value = 1;
}
DB = VEC.real.abs() + VEC.imaginary.abs();
if (DA11 < ONE && DB > ONE) {
if (DB > BIGNUM * DA11) SCALOC = ONE / DB;
}
X11 = zladiv(VEC * Complex(SCALOC), A11);
if (SCALOC != ONE) {
for (J = 1; J <= N; J++) {
zdscal(M, SCALOC, C(1, J).asArray(), 1);
}
SCALE.value *= SCALOC;
}
C[K][L] = X11;
}
}
} else if (NOTRNA && !NOTRNB) {
// Solve A*X + ISGN*X*B**H = C.
// The (K,L)th block of X is determined starting from
// bottom-left corner column by column by
// A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L)
// Where
// M N
// R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)]
// I=K+1 J=L+1
for (L = N; L >= 1; L--) {
for (K = M; K >= 1; K--) {
SUML = zdotu(M - K, A(K, min(K + 1, M)).asArray(), LDA,
C(min(K + 1, M), L).asArray(), 1);
SUMR = zdotc(N - L, C(K, min(L + 1, N)).asArray(), LDC,
B(L, min(L + 1, N)).asArray(), LDB);
VEC = C[K][L] - (SUML + SGN.toComplex() * SUMR.conjugate());
SCALOC = ONE;
A11 = A[K][K] + SGN.toComplex() * B[L][L].conjugate();
DA11 = A11.real.abs() + A11.imaginary.abs();
if (DA11 <= SMIN) {
A11 = SMIN.toComplex();
DA11 = SMIN;
INFO.value = 1;
}
DB = VEC.real.abs() + VEC.imaginary.abs();
if (DA11 < ONE && DB > ONE) {
if (DB > BIGNUM * DA11) SCALOC = ONE / DB;
}
X11 = zladiv(VEC * Complex(SCALOC), A11);
if (SCALOC != ONE) {
for (J = 1; J <= N; J++) {
zdscal(M, SCALOC, C(1, J).asArray(), 1);
}
SCALE.value *= SCALOC;
}
C[K][L] = X11;
}
}
}
}