ztrttf function
void
ztrttf()
Implementation
void ztrttf(
final String TRANSR,
final String UPLO,
final int N,
final Matrix<Complex> A_,
final int LDA,
final Array<Complex> ARF_,
final Box<int> INFO,
) {
final A = A_.having(ld: LDA, offset: zeroIndexedMatrixOffset);
final ARF = ARF_.having(offset: zeroIndexedArrayOffset);
bool LOWER, NISODD, NORMALTRANSR;
int I, IJ, J, K = 0, L, N1, N2, NT, NX2 = 0, NP1X2 = 0;
// Test the input parameters.
INFO.value = 0;
NORMALTRANSR = lsame(TRANSR, 'N');
LOWER = lsame(UPLO, 'L');
if (!NORMALTRANSR && !lsame(TRANSR, 'C')) {
INFO.value = -1;
} else if (!LOWER && !lsame(UPLO, 'U')) {
INFO.value = -2;
} else if (N < 0) {
INFO.value = -3;
} else if (LDA < max(1, N)) {
INFO.value = -5;
}
if (INFO.value != 0) {
xerbla('ZTRTTF', -INFO.value);
return;
}
// Quick return if possible
if (N <= 1) {
if (N == 1) {
if (NORMALTRANSR) {
ARF[0] = A[0][0];
} else {
ARF[0] = A[0][0].conjugate();
}
}
return;
}
// Size of array ARF(1:2,0:nt-1)
NT = N * (N + 1) ~/ 2;
// set N1 and N2 depending on LOWER: for N even N1=N2=K
if (LOWER) {
N2 = N ~/ 2;
N1 = N - N2;
} else {
N1 = N ~/ 2;
N2 = N - N1;
}
// If N is odd, set NISODD = true , LDA=N+1 and A is (N+1)--by--K2.
// If N is even, set K = N/2 and NISODD = false , LDA=N and A is
// N--by--(N+1)/2.
if ((N % 2) == 0) {
K = N ~/ 2;
NISODD = false;
if (!LOWER) NP1X2 = N + N + 2;
} else {
NISODD = true;
if (!LOWER) NX2 = N + N;
}
if (NISODD) {
// N is odd
if (NORMALTRANSR) {
// N is odd and TRANSR = 'N'
if (LOWER) {
// SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
// T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
// T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n
IJ = 0;
for (J = 0; J <= N2; J++) {
for (I = N1; I <= N2 + J; I++) {
ARF[IJ] = A[N2 + J][I].conjugate();
IJ++;
}
for (I = J; I <= N - 1; I++) {
ARF[IJ] = A[I][J];
IJ++;
}
}
} else {
// SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
// T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
// T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n
IJ = NT - N;
for (J = N - 1; J >= N1; J--) {
for (I = 0; I <= J; I++) {
ARF[IJ] = A[I][J];
IJ++;
}
for (L = J - N1; L <= N1 - 1; L++) {
ARF[IJ] = A[J - N1][L].conjugate();
IJ++;
}
IJ -= NX2;
}
}
} else {
// N is odd and TRANSR = 'C'
if (LOWER) {
// SRPA for LOWER, TRANSPOSE and N is odd
// T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
// T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1
IJ = 0;
for (J = 0; J <= N2 - 1; J++) {
for (I = 0; I <= J; I++) {
ARF[IJ] = A[J][I].conjugate();
IJ++;
}
for (I = N1 + J; I <= N - 1; I++) {
ARF[IJ] = A[I][N1 + J];
IJ++;
}
}
for (J = N2; J <= N - 1; J++) {
for (I = 0; I <= N1 - 1; I++) {
ARF[IJ] = A[J][I].conjugate();
IJ++;
}
}
} else {
// SRPA for UPPER, TRANSPOSE and N is odd
// T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
// T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda=n2
IJ = 0;
for (J = 0; J <= N1; J++) {
for (I = N1; I <= N - 1; I++) {
ARF[IJ] = A[J][I].conjugate();
IJ++;
}
}
for (J = 0; J <= N1 - 1; J++) {
for (I = 0; I <= J; I++) {
ARF[IJ] = A[I][J];
IJ++;
}
for (L = N2 + J; L <= N - 1; L++) {
ARF[IJ] = A[N2 + J][L].conjugate();
IJ++;
}
}
}
}
} else {
// N is even
if (NORMALTRANSR) {
// N is even and TRANSR = 'N'
if (LOWER) {
// SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
// T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
// T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1
IJ = 0;
for (J = 0; J <= K - 1; J++) {
for (I = K; I <= K + J; I++) {
ARF[IJ] = A[K + J][I].conjugate();
IJ++;
}
for (I = J; I <= N - 1; I++) {
ARF[IJ] = A[I][J];
IJ++;
}
}
} else {
// SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
// T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
// T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1
IJ = NT - N - 1;
for (J = N - 1; J >= K; J--) {
for (I = 0; I <= J; I++) {
ARF[IJ] = A[I][J];
IJ++;
}
for (L = J - K; L <= K - 1; L++) {
ARF[IJ] = A[J - K][L].conjugate();
IJ++;
}
IJ -= NP1X2;
}
}
} else {
// N is even and TRANSR = 'C'
if (LOWER) {
// SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B)
// T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) :
// T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k
IJ = 0;
J = K;
for (I = K; I <= N - 1; I++) {
ARF[IJ] = A[I][J];
IJ++;
}
for (J = 0; J <= K - 2; J++) {
for (I = 0; I <= J; I++) {
ARF[IJ] = A[J][I].conjugate();
IJ++;
}
for (I = K + 1 + J; I <= N - 1; I++) {
ARF[IJ] = A[I][K + 1 + J];
IJ++;
}
}
for (J = K - 1; J <= N - 1; J++) {
for (I = 0; I <= K - 1; I++) {
ARF[IJ] = A[J][I].conjugate();
IJ++;
}
}
} else {
// SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B)
// T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0)
// T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k
IJ = 0;
for (J = 0; J <= K; J++) {
for (I = K; I <= N - 1; I++) {
ARF[IJ] = A[J][I].conjugate();
IJ++;
}
}
for (J = 0; J <= K - 2; J++) {
for (I = 0; I <= J; I++) {
ARF[IJ] = A[I][J];
IJ++;
}
for (L = K + 1 + J; L <= N - 1; L++) {
ARF[IJ] = A[K + 1 + J][L].conjugate();
IJ++;
}
}
// Note that here J = K-1
for (I = 0; I <= J; I++) {
ARF[IJ] = A[I][J];
IJ++;
}
}
}
}
}